Advertisement
Editors Picks
Subscribe to Editors Picks
View Sample

FREE Email Newsletter

Milky Way’s center unveils supernova “dust factory”

March 19, 2015 3:09 pm | by Blaine Friedlander, Cornell Univ. | News | Comments

Sifting through the center of the Milky Way galaxy, astronomers have made the first direct observations, using an infrared telescope aboard a modified Boeing 747, of cosmic building-block dust resulting from an ancient supernova.

Sharper nanoscopy

March 19, 2015 2:16 pm | by Phillip Schewe, Joint Quantum Institute | News | Comments

The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the emitter of the illumination quite small and by moving it quite close to the object being imaged. One problem with this approach is in such proximity, the emitter and object can interact with each other, blurring the resulting image.

Ocean pipes “not cool”, would end up warming climate

March 19, 2015 1:52 pm | by Carnegie Institute | News | Comments

To combat global climate change caused by greenhouse gases, alternative energy sources and other types of environmental recourse actions are needed. There are a variety of proposals that involve using vertical ocean pipes to move seawater to the surface from the depths in order to reap different potential climate benefits.

Advertisement

Spot treatment

March 19, 2015 1:41 pm | by Sonia Fernandez, Univ. of California, Santa Barbara | News | Comments

Acne, a scourge of adolescence, may be about to meet its ultra-high-tech match. By using a combination of ultrasound, gold-covered particles and lasers, researchers from Univ. of California, Santa Barbara and Sebacia have developed a targeted therapy that could potentially lessen the frequency and intensity of breakouts, relieving acne sufferers the discomfort and stress of dealing with severe and recurring pimples.

New way to control light

March 19, 2015 1:30 pm | by Univ. of Central Florida | News | Comments

A device resembling a plastic honeycomb, yet infinitely smaller than a bee’s stinger, can steer light beams around tighter curves than ever before possible, while keeping the integrity and intensity of the beam intact. The work introduces a more effective way to transmit data rapidly on electronic circuit boards by using light.

Study holds great promise for advancing sustainable energy

March 19, 2015 12:56 pm | by Rutgers Univ. | News | Comments

New research published by Rutgers Univ. chemists has documented significant progress confronting one of the main challenges inhibiting widespread utilization of sustainable power: Creating a cost-effective process to store energy so it can be used later.

Researchers use shearing method to create nanofiber “gusher”

March 19, 2015 9:59 am | by Mick Kulikowski, North Carolina State Univ. News Services | News | Comments

Creating large amounts of polymer nanofibers dispersed in liquid is a challenge that has vexed researchers for years. But engineers and researchers at North Carolina State Univ. and one of its startup companies have now reported a method that can produce unprecedented amounts of polymer nanofibers, which have potential applications in filtration, batteries and cell scaffolding.

Rare-earth innovation to improve nylon manufacturing

March 19, 2015 8:56 am | by Laura Millsaps, Ames Laboratory Public Affairs | News | Comments

The Critical Materials Institute has created a new chemical process that makes use of the widely available rare-earth metal cerium to improve the manufacture of nylon. The process uses a cerium-based material made into nanometer-sized particles with a palladium catalyst to produce cyclohexanone, a key ingredient in the production of nylon.

Advertisement

Watching quantum dots “breathe” in response to stress

March 19, 2015 8:44 am | by SLAC National Accelerator Laboratory | News | Comments

Researchers at SLAC National Accelerator Laboratory watched nanoscale semiconductor crystals expand and shrink in response to powerful pulses of laser light. This ultrafast “breathing” provides new insight about how such tiny structures change shape as they start to melt: information that can help guide researchers in tailoring their use for a range of applications.

Model captures new dynamics of corrosion damage

March 19, 2015 8:13 am | by Scott Schrage, Univ. of Nebraska-Lincoln Communications | News | Comments

Univ. of Nebraska-Lincoln engineers have become the first to develop a model that literally looks beyond the surface of corrosion to better predict its spread. The model's unique capabilities could allow engineers to more precisely forecast catastrophic structural failures and design materials less susceptible to the widespread issue, the researchers reported.

Modeling how cells move together could inspire self-healing materials

March 19, 2015 8:02 am | by Louise Lerner, Argonne National Laboratory | News | Comments

A paper published in Scientific Reports by a team led by physicist Igor Aronson of the Argonne National Laboratory modeled the motion of cells moving together. This may help scientists design new technologies inspired by nature, such as self-healing materials in batteries and other devices. Scientists have been borrowing ideas from the natural world for hundreds of years.

Buckyballs become bucky-bombs

March 18, 2015 4:15 pm | by Robert Perkins, Univ. of Southern California | News | Comments

In 1996, a trio of scientists won the Nobel Prize for Chemistry for their discovery of Buckminsterfullerene: soccer-ball-shaped spheres of 60 joined carbon atoms that exhibit special physical properties. Now, 20 years later, scientists have figured out how to turn them into Buckybombs.

In climatic tug of war, carbon released from thawing permafrost wins handily

March 18, 2015 3:55 pm | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

There’s a carbon showdown brewing in the Arctic as Earth’s climate changes. On one side, thawing permafrost could release enormous amounts of long-frozen carbon into the atmosphere. On the opposing side, as high-latitude regions warm, plants will grow more quickly, which means they’ll take in more carbon from the atmosphere. Whichever side wins will have a big impact on the carbon cycle and the planet’s climate.

Advertisement

Researchers fine-tune quantum dots from coal

March 18, 2015 1:54 pm | by Mike Williams, Rice Univ. | News | Comments

Graphene quantum dots made from coal, introduced in 2013 by the Rice Univ. laboratory of chemist James Tour, can be engineered for specific semiconducting properties in either of two single-step processes. In a new study, Tour and colleagues demonstrated fine control over the graphene-oxide dots’ size-dependent band gap, the property that makes them semiconductors.

New optical materials break digital connectivity barriers

March 18, 2015 12:03 pm | by George Hunka, Tel Aviv Univ. | News | Comments

From computers, tablets and smartphones to cars, homes and public transportation, our world is more digitally connected every day. The technology required to support the exchange of massive quantities of data is critical. That's why scientists and engineers are intent on developing faster computing units capable of supporting much larger amounts of data transfer and data processing.

Improved method for coating gold nanorods

March 18, 2015 11:55 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers have fine-tuned a technique for coating gold nanorods with silica shells, allowing engineers to create large quantities of the nanorods and giving them more control over the thickness of the shell. Gold nanorods are being investigated for use in a wide variety of biomedical applications, and this advance paves the way for more stable gold nanorods and for chemically functionalizing the surface of the shells.

Malaria test for ancient human remains

March 18, 2015 10:21 am | by Jim Shelton, Yale Univ. | News | Comments

Ancient malaria patients, the anthropologist will see you now. A Yale Univ. scientist has developed a promising new method to identify malaria in the bone marrow of ancient human remains. It is the first time researchers have been able to establish a diagnostic, human skeletal profile for the disease, which is transmitted by mosquitoes and continues to infect millions of people a year.

Understanding proteins involved in fertility could help boost IVF success

March 18, 2015 10:06 am | by American Chemical Society | News | Comments

Women who have difficulty getting pregnant often turn to in-vitro fertilization (IVF), but it doesn’t always work. Now scientists are taking a new approach to improve the technique by studying the proteins that could help ready a uterus for an embryo to implant in its wall. Their report could help researchers develop a new treatment that could potentially increase the success rate of IVF.

Extent of moon’s giant volcanic eruption is revealed

March 18, 2015 9:59 am | by Leighton Kitson, Durham Univ. | News | Comments

Scientists have produced a new map of the moon’s most unusual volcano showing that its explosive eruption spread debris over an area much greater than previously thought. A team of astronomers and geologists, led by experts at Durham Univ., U.K., studied an area of the lunar surface in the Compton-Belkovich Volcanic Complex.

Light as a puppeteer

March 18, 2015 9:24 am | by Laura Petersen, OIST | Videos | Comments

Researchers at the OIST have demonstrated a more robust method for controlling single, micron-sized particles with light. Passing light along optical microfibers or nanofibers to manipulate particles has gained popularity in the past decade and has an array of promising applications in physics and biology. Most research has focused on using this technique with the basic profile of light.

Cool process to make better graphene

March 18, 2015 8:05 am | by Ker Than, Caltech | News | Comments

A new technique invented at Caltech to produce graphene at room temperature could help pave the way for commercially feasible graphene-based solar cells and LEDs, large-panel displays and flexible electronics. With the new technique, researchers can grow large sheets of electronic-grade graphene in much less time and at much lower temperatures.

Minimal device maximizes macula imaging

March 18, 2015 7:49 am | by Mike Williams, Rice Univ. | Videos | Comments

A smart and simple method developed at Rice Univ. to image a patient’s eye could help monitor eye health and spot signs of macular degeneration and diabetic retinopathy, especially in developing nations. The patient-operated, portable device invented at Rice is called mobileVision. It can be paired with a smartphone to give clinicians finely detailed images of the macula, without artificially dilating the pupil.

Textured rubber that grips slick, icy surfaces

March 17, 2015 4:08 pm | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Winter storms dumped records amounts of snow on the East Coast this February, leaving treacherous, icy sidewalks and roads in their wake. Now researchers from Canada are developing new methods to mass-produce a material that may help pedestrians get a better grip on slippery surfaces. The material, which is made up of glass fibers embedded in a compliant rubber, could one day be used in the soles of slip-resistant winter boots.

Data structures influence speed of quantum search in unexpected ways

March 17, 2015 3:25 pm | by Susan Brown, Univ. of California, San Diego | News | Comments

Using the quantum property of superposition, quantum computers will be able to find target items within large piles of data far faster than conventional computers ever could. But the speed of the search will likely depend on the structure of the data. Such a search would proceed as a quantum particle jumps from one node of a connected set of data to another. Intuition says that the search would be fastest in a highly connected database.

“Smart bandage” detects bed sores before they are visible

March 17, 2015 2:23 pm | by Sarah Yang, Univ. of California, Berkeley | Videos | Comments

Engineers at the Univ. of California, Berkeley, are developing a new type of bandage that does far more than stanch the bleeding from a paper cut or scraped knee. Thanks to advances in flexible electronics, the researchers have created a new “smart bandage” that uses electrical currents to detect early tissue damage from pressure ulcers, or bedsores, before they can be seen by human eyes, and while recovery is still possible.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading