Advertisement
Editors Picks
Subscribe to Editors Picks
View Sample

FREE Email Newsletter

Meteorite may represent ‘bulk background’ of Mars’ battered crust

February 2, 2015 9:29 am | by Kevin Stacey, Brown Univ. | News | Comments

NWA 7034, a meteorite found a few years ago in the Moroccan desert, is like no other rock ever found on Earth. It’s been shown to be a 4.4 billion-year-old chunk of the Martian crust, and according to a new analysis, rocks just like it may cover vast swaths of Mars.

The quest for efficiency in thermoelectric nanowires

February 2, 2015 8:58 am | by Sue Holmes, Sandia National Laboratories | News | Comments

Efficiency is big in the tiny world of thermoelectric nanowires. Researchers at Sandia National Laboratories say better materials and manufacturing techniques for the nanowires could allow carmakers to harvest power from the heat wasted by exhaust systems or lead to more efficient devices to cool computer chips.

Scientists retract high-profile cosmic claim

February 2, 2015 8:37 am | by Malcolm Ritter, AP Science Writer, Associated Press | News | Comments

Scientists who made headlines last March by announcing that they'd found long-sought evidence about the early universe are now abandoning that claim. New data show that their cosmic observations no longer back up that conclusion, they say.

Advertisement

Complex environments push “brain” evolution

February 2, 2015 7:31 am | by Univ. of Wisconsin-Madison | News | Comments

Little animations trying to master a computer game are teaching neuroscience researchers how the brain evolves when faced with difficult tasks. Neuroscientists have programmed animated critters that they call "animats." The critters have a rudimentary neural system made of eight nodes: two sensors, two motors and four internal computers that coordinate sensation, movement and memory.

PNNL recognized for moving biofuel, chemical analysis innovations to market

February 2, 2015 7:24 am | by Eric Francavilla, PNNL | News | Comments

Developing renewable fuel from wet algae and enabling analysis of complex liquids are two of the latest innovations Pacific Northwest National Laboratory (PNNL) has successfully driven to the market with the help of commercial partners.

Evidence mounts for quantum criticality theory

January 30, 2015 4:01 pm | by Mike Williams, Rice Univ. | News | Comments

A new study by a team of physicists at Rice Univ., Zhejiang Univ., Los Alamos National Laboratory, Florida State Univ. and the Max Planck Institute adds to the growing body of evidence supporting a theory that strange electronic behaviors arise from quantum fluctuations of strongly correlated electrons.

Using a single molecule to create a new magnetic field sensor

January 30, 2015 9:16 am | by Univ. of Liverpool | News | Comments

Researchers at the Univ. of Liverpool and Univ. College London have shown a new way to use a single molecule as a magnetic field sensor. In a study, published in Nature Nanotechnology, the team shows how magnetism can manipulate the way electricity flows through a single molecule, a key step that could enable the development of magnetic field sensors for hard drives that are a tiny fraction of their present size.

Building trustworthy big data algorithms

January 30, 2015 8:41 am | by Emily Ayshford, Northwestern Univ. | News | Comments

Much of our reams of data sit in large databases of unstructured text. Finding insights among emails, text documents and Websites is extremely difficult unless we can search, characterize and classify their text data in a meaningful way. One of the leading big data algorithms for finding related topics within unstructured text (an area called topic modeling) is latent Dirichlet allocation (LDA).

Advertisement

DNA nanoswitches reveal how life’s molecules connect

January 30, 2015 8:17 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

A complex interplay of molecular components governs most aspects of biological sciences: healthy organism development, disease progression and drug efficacy are all dependent on the way life's molecules interact in the body. Understanding these biomolecular interactions is critical for the discovery of new therapeutics and diagnostics to treat diseases, but currently requires scientists to have access to expensive laboratory equipment.

CAT scan of nearby supernova remnant reveals frothy interior

January 30, 2015 8:00 am | by David A. Aguilar, Harvard-Smithsonian Center for Astrophysics | News | Comments

Cassiopeia A, or Cas A, is one of the most well-studied supernova remnants in our galaxy. But it still holds major surprises. Harvard-Smithsonian and Dartmouth College astronomers have generated a new 3-D map of its interior using the astronomical equivalent of a CAT scan. They found that the Cas A supernova remnant is composed of a collection of about a half dozen massive cavities—or "bubbles."

Light-converting materials point to cheaper, more efficient solar power, LEDs

January 30, 2015 7:50 am | by Marit Mitchell, Senior Communications Office, Univ. of Toronto | News | Comments

Engineers are shining new light on an emerging family of solar-absorbing materials that could clear the way for cheaper and more efficient solar panels and LEDs. The materials, called perovskites, are particularly good at absorbing visible light, but had never been studied in their purest form: as perfect single crystals.

Eyeglasses that turn into sunglasses

January 29, 2015 3:52 pm | by American Chemical Society | News | Comments

Imagine eyeglasses that can go quickly from clear to shaded and back again when you want them to, rather than passively in response to changes in light. Scientists report a major step toward that goal, which could benefit pilots, security guards and others who need such control, in ACS Applied Materials & Interfaces.

Qubits with staying power

January 29, 2015 3:41 pm | by Larry Hardesty, MIT News Office | News | Comments

Quantum computers are experimental devices that promise exponential speedups on some computational problems. Where a bit in a classical computer can represent either a 0 or a 1, a quantum bit, or qubit, can represent 0 and 1 simultaneously, letting quantum computers explore multiple problem solutions in parallel. But such “superpositions” of quantum states are, in practice, difficult to maintain.

Advertisement

Extreme oxygen loss in oceans accompanied past global climate change

January 29, 2015 11:58 am | by Kat Kerlin, UC Davis News Service | News | Comments

Seafloor sediment cores reveal abrupt, extensive loss of oxygen in the ocean when ice sheets melted roughly 10,000 to 17,000 years ago, according to a study. The findings provide insight into similar changes observed in the ocean today. In the study, researchers analyzed marine sediment cores from different world regions to document the extent to which low oxygen zones in the ocean have expanded in the past, due to climate change.

Refineries challenge EPA plan to cut emissions

January 29, 2015 10:26 am | by American Chemical Society | News | Comments

A rule proposed by the Environmental Protection Agency that aims to curb emissions from oil refineries and petrochemical manufacturers is causing tensions to flare between the agency and industry groups. The agency is reviewing a flood of public comments on the issue and is expected to finalize the rule by April 17, according to an article in Chemical & Engineering News.

Missing link in metal physics explains Earth’s magnetic field

January 29, 2015 9:58 am | by Carnegie Institute | News | Comments

Earth’s magnetic field is crucial for our existence, as it shields the life on our planet’s surface from deadly cosmic rays. It is generated by turbulent motions of liquid iron in Earth’s core. Iron is a metal, which means it can easily conduct a flow of electrons that makes up an electric current. New findings show a missing piece of the traditional theory explaining why metals become less conductive when they are heated.

Detecting chemical weapons with a color-changing film

January 29, 2015 8:39 am | by American Chemical Society | News | Comments

In today’s world, in which the threat of terrorism looms, there is an urgent need for fast, reliable tools to detect the release of deadly chemical warfare agents (CWAs). In ACS Macro Letters, scientists are reporting new progress toward thin-film materials that could rapidly change colors in the presence of CWAs.

Researchers design tailored tissue adhesives

January 29, 2015 8:17 am | by Anne Trafton, MIT News Office | News | Comments

After undergoing surgery to remove diseased sections of the colon, up to 30% of patients experience leakage from their sutures, which can cause life-threatening complications. Many efforts are under way to create new tissue glues that can help seal surgical incisions and prevent such complications; now, a new study reveals that the effectiveness of such glues hinges on the state of the tissue in which they are being used.

Gully patterns document Martian climate cycles

January 29, 2015 8:06 am | by Kevin Stacey, Brown Univ. | News | Comments

Geologists from Brown Univ. have found new evidence that glacier-like ice deposits advanced and retreated multiple times in the mid-latitude regions of Mars in the relatively recent past. For the study, the researchers looked at hundreds of gully-like features found on the walls of impact craters throughout the Martian mid-latitudes.

Using ocean waves to monitor offshore oil and gas fields

January 29, 2015 7:54 am | by Ker Than, Stanford Univ. | News | Comments

A technology developed by Stanford Univ. scientists for passively probing the seafloor using weak seismic waves generated by the ocean could revolutionize offshore oil and natural gas extraction by providing real-time monitoring of the subsurface while lessening the impact on marine life.

New mechanism unlocked for evolution of green fluorescent protein

January 28, 2015 10:51 am | by Jenny Green, Arizona State Univ. | News | Comments

A primary challenge in the biosciences is to understand the way major evolutionary changes in nature are accomplished. Sometimes the route turns out to be very simple. A group of scientists showed, for the first time, that a hinge migration mechanism, driven solely by long-range dynamic motions, can be the key for evolution of a green-to-red photoconvertible phenotype in a green fluorescent protein.

Ancient star system reveals Earth-sized planets forming near start of universe

January 28, 2015 10:34 am | by Verity Leatherdale, Univ. of Sydney | News | Comments

A sun-like star with orbiting planets, dating back to the dawn of the galaxy, has been discovered by an international team of astronomers. At 11.2 billion years old it is the oldest star with Earth-sized planets ever found and proves that such planets have formed throughout the history of the universe. The discovery used observations made by NASA's Kepler satellite.

Early Mesoamericans affected by climate change

January 28, 2015 10:22 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Scientists have reconstructed the past climate for the region around Cantona, a large fortified city in highland Mexico, and found the population drastically declined in the past, at least in part because of climate change. The research appears in the online edition of the Proceedings of the National Academy of Sciences.

Laser pulse that gets shorter by itself

January 28, 2015 8:53 am | by Florian Aigner, Vienna Univ. of Technology | News | Comments

In a marathon, everyone starts at roughly the same place at roughly the same time. But the faster runners will gradually increase their lead, and in the end, the distribution of runners on the street will be very broad. Something similar happens to a pulse of light sent through a medium. The pulse is a combination of different colors (or wavelengths), and when they are sent through a medium like glass, they travel at different speeds.

New pathway to valleytronics

January 28, 2015 8:43 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A potential avenue to quantum computing currently generating quite the buzz in the high-tech industry is “valleytronics,” in which information is coded based on the wavelike motion of electrons moving through certain 2-D semiconductors. Now, a promising new pathway to valleytronic technology has been uncovered by researchers with the Lawrence Berkeley National Laboratory.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading