Advertisement
Editors Picks
Subscribe to Editors Picks
View Sample

FREE Email Newsletter

Cellular RNA can template DNA repair in yeast

September 4, 2014 7:54 am | by John Toon, Georgia Institute of Technology | News | Comments

The ability to accurately repair DNA damaged by spontaneous errors, oxidation or mutagens is crucial to the survival of cells. This repair is normally accomplished by using an identical or homologous intact sequence of DNA, but scientists have now shown that RNA produced within cells of a common budding yeast can serve as a template for repairing the most devastating DNA damage—a break in both strands of a DNA helix.

Breakthrough for carbon nanotube solar cells

September 3, 2014 11:47 am | by Amanda Morris, Northwestern Univ. | News | Comments

Lighter, more flexible and cheaper than conventional solar-cell materials, carbon nanotubes (CNTs) have long shown promise for photovoltaics. But research stalled when CNTs proved to be inefficient, converting far less sunlight into power than other methods. Now a research team has created a new type of CNT solar cell that is twice as efficient as its predecessors.  

Nano-sized synthetic scaffolding technique

September 3, 2014 7:33 am | by Jim Barlow, Director of Science and Research Communications, Univ. of Oregon | News | Comments

Scientists have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological mechanisms and processes. The accomplishmentis expected to fuel an alternative design of the 2-D peptoid nanosheets that can be used in a broad range of applications. Among them could be improved chemical sensors and separators, and safer, more effective drug delivery vehicles.

Advertisement

How Big is Big—Tall, Grande, Venti Data?

September 2, 2014 1:51 pm | by Nick Burch, CTO, Quanticate | Articles | Comments

Today, big data is a hot topic within almost every industry. May saw the biggest ever European technologists conference on big data, Berlin Buzzwords, while the likes of O'Reilly's Strata conference pull in huge numbers of attendees keen to learn how to adapt to this new world. Despite all the interest, a great deal of confusion remains around big data.

Ebola genomes sequenced

September 2, 2014 10:28 am | by Lisa Girard, Broad Institute Communication | News | Comments

Responding rapidly to the deadly outbreak of Ebola virus disease (EVD) in West Africa, a team of researchers from the Broad Institute and Harvard Univ., working with the Sierra Leone Ministry of Health and Sanitation and researchers elsewhere, has sequenced and analyzed many Ebola virus genomes. Their findings could have important implications for rapid field diagnostic tests.

Engineers develop new sensor to detect tiny individual nanoparticles

September 2, 2014 8:51 am | by Tony Fitzpatrick, Washington Univ. in St. Louis | News | Comments

A team of researchers in the U.S. and China have developed a new sensor that can detect and count nanoparticles, at sizes as small as 10 nm, one at a time. The researchers say the sensor, which is a Raman microlaser sensor in a silicon dioxide chip that does not need rare-earth ions to achieve high resolution, could potentially detect much smaller particles, viruses and small molecules.

Single laser stops molecular tumbling motion instantly

September 2, 2014 8:26 am | News | Comments

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern Univ. scientists have figured out an elegant way to stop a molecule from tumbling so that its potential for new applications can be harnessed: shine a single laser on a trapped molecule and it instantly cools to the temperature of outer space, stopping the rotation of the molecule.

Going to extremes for enzymes

September 2, 2014 8:08 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In the age-old nature versus nurture debate, Douglas Clark, a faculty scientist with Lawrence Berkeley National Laboratory and the Univ. of California, Berkeley, is not taking sides. In the search for enzymes that can break lignocellulose down into biofuel sugars under the extreme conditions of a refinery, he has prospected for extremophilic microbes and engineered his own cellulases.

Advertisement

A new way to diagnose malaria

September 2, 2014 7:38 am | by Anne Trafton, MIT News Office | News | Comments

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye and looks under a microscope for the Plasmodium parasite, which causes the disease. This approach gives an accurate count of how many parasites are in the blood, but is not ideal because there is potential for human error.

Synthesis produces new antibiotic

August 28, 2014 10:10 am | by Mike Williams, Rice Univ. | News | Comments

A fortuitous collaboration at Rice Univ. has led to the total synthesis of a recently discovered natural antibiotic. The laboratory recreation of a fungus-derived antibiotic, viridicatumtoxin B, may someday help bolster the fight against bacteria that evolve resistance to treatments in hospitals and clinics around the world.

Cool roofs in China can save energy, reduce emissions

August 28, 2014 8:49 am | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Working with Chinese researchers, Lawrence Berkeley National Laboratory has conducted the first comprehensive study of cool roofs in China and concluded that they would be effective in substantially reducing energy use and greenhouse gas emissions in climate zones with hot summers.

Neuroscientists reverse memories’ emotional associations

August 28, 2014 8:27 am | by Anne Trafton, MIT News Office | News | Comments

Most memories have some kind of emotion associated with them. A new study from Massachusetts Institute of Technology neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics.

Smartphone app can detect newborn jaundice in minutes

August 27, 2014 11:40 am | by Michelle Ma, Univ. of Washington | News | Comments

Newborn jaundice: It’s one of the last things a parent wants to deal with, but it’s unfortunately a common condition in babies less than a week old. Skin that turns yellow can be a sure sign that a newborn is jaundiced and isn’t adequately eliminating the chemical bilirubin. But that discoloration is sometimes hard to see. Researchers have developed a smartphone application that checks for jaundice in newborns.

Advertisement

Optical microscope technique confirmed as valid nano measurement tool

August 27, 2014 11:22 am | by Chad Boutin, NIST | News | Comments

Recent experiments have confirmed that a technique developed several years ago at NIST can enable optical microscopes to measure the 3-D shape of objects at nanometer-scale resolution—far below the normal resolution limit for optical microscopy (about 250 nm for green light). The results could make the technique a useful quality control tool in the manufacture of nanoscale devices such as next-generation microchips.

Scientists craft atomically seamless, thinnest-possible semiconductor junctions

August 26, 2014 4:13 pm | by Michelle Ma, Univ. of Washington | News | Comments

Univ. of Washington researchers have developed what they believe is the thinnest-possible semiconductor, a new class of nanoscale materials made in sheets only three atoms thick. They have demonstrated that two of these single-layer semiconductor materials can be connected in an atomically seamless fashion known as a heterojunction. This result could be the basis for next-generation flexible and transparent computing.

Competition for graphene

August 26, 2014 1:56 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A new argument has just been added to the growing case for graphene being bumped off its pedestal as the next big thing in the high-tech world by the 2-D semiconductors known as MX2 materials. An international collaboration of researchers led by Lawrence Berkeley National Laboratory has reported the first experimental observation of ultrafast charge transfer in photo-excited MX2 materials.

Do we live in a 2-D hologram?

August 26, 2014 1:16 pm | by Fermi National Accelerator Laboratory | News | Comments

A unique experiment at the Fermi National Accelerator Laboratory called the Holometer has started collecting data that will answer some mind-bending questions about our universe—including whether we live in a hologram. Much like characters on a television show would not know that their seemingly 3-D world exists only on a 2-D screen, we could be clueless that our 3-D space is just an illusion.

Symphony of nanoplasmonic and optical resonators leads to laser-like light emission

August 26, 2014 11:20 am | by Rick Kubetz, Engineering Communications Office | News | Comments

By combining plasmonics and optical microresonators, researchers at the Univ. of Illinois at Urbana-Champaign have created a new optical amplifier (or laser) design, paving the way for power-on-a-chip applications. The speed of currently available semiconductor electronics is limited to about 10 GHz due to heat generation and interconnects delay time issues.

Calculating conditions at the birth of the universe

August 26, 2014 8:06 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Using a calculation originally proposed seven years ago to be performed on a petaflop computer, Lawrence Livermore National Laboratory researchers computed conditions that simulate the birth of the universe. When the universe was less than one microsecond old and more than one trillion degrees, it transformed from a plasma of quarks and gluons into bound states of quarks.

A glucose meter of a different color provides continuous monitoring

August 26, 2014 7:53 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | Videos | Comments

Univ. of Illinois engineers are bringing a touch of color to glucose monitoring. The researchers developed a new continuous glucose monitoring material that changes color as glucose levels fluctuate, and the wavelength shift is so precise that doctors and patients may be able to use it for automatic insulin dosing—something now possible using current point measurements like test strips.

Sorting cells with sound waves

August 26, 2014 7:36 am | by Anne Trafton, MIT News Office | Videos | Comments

Researchers have devised a new way to separate cells by exposing them to sound waves as they flow through a tiny channel. Their device, about the size of a dime, could be used to detect the extremely rare tumor cells that circulate in cancer patients’ blood, helping doctors predict whether a tumor is going to spread.

Breakthrough understanding of biomolecules could lead to new, better drugs

August 25, 2014 9:09 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

There’s a certain type of biomolecule built like a nano-Christmas tree. Called a glycoconjugate, it’s many branches are bedecked with sugary ornaments. It’s those ornaments that get all the glory. That’s because, according to conventional wisdom, the glycoconjugate’s lowly “tree” basically holds the sugars in place as they do the important work of reacting with other molecules.

Biomimetic photodetector “sees” in color

August 25, 2014 7:56 am | by Jade Boyd, Rice Univ. | News | Comments

Rice Univ. researchers have created a CMOS-compatible, biomimetic color photodetector that directly responds to red, green and blue light in much the same way the human eye does. The new device uses an aluminum grating that can be added to silicon photodetectors with the silicon microchip industry’s mainstay technology, “complementary metal-oxide semiconductor,” or CMOS.

Study: Cutting emissions pays for itself

August 25, 2014 7:44 am | by Audrey Resutek, MIT | News | Comments

Lower rates of asthma and other health problems are frequently cited as benefits of policies aimed at cutting carbon emissions from sources like power plants and vehicles, because these policies also lead to reductions in other harmful types of air pollution. But just how large are the health benefits of cleaner air in comparison to the costs of reducing carbon emissions?

Sunlight controls the fate of carbon released from thawing Arctic permafrost

August 22, 2014 9:20 am | by Bernie DeGroat, Univ. of Michigan | News | Comments

Just how much Arctic permafrost will thaw in the future and how fast heat-trapping carbon dioxide will be released from those warming soils is a topic of lively debate among climate scientists. To answer those questions, scientists need to understand the mechanisms that control the conversion of organic soil carbon into carbon dioxide gas. Until now, researchers believed that bacteria were largely responsible.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading