Advertisement
Editors Picks
Subscribe to Editors Picks
View Sample

FREE Email Newsletter

Engineering a better solar cell

May 1, 2015 7:57 am | by Renee Gastineau, Univ. of Washington | News | Comments

One of the fastest-growing areas of solar energy research is with materials called perovskites. These promising light harvesters could revolutionize the solar and electronics industries because they show potential to convert sunlight into electricity more efficiently and less expensively than today’s silicon-based semiconductors.

Did dinosaur-killing asteroid trigger largest lava flows on Earth?

May 1, 2015 7:47 am | by Robert Sanders, Univ. of California, Berkeley | News | Comments

The asteroid that slammed into the ocean off Mexico 66 million years ago and killed off the dinosaurs probably rang the Earth like a bell, triggering volcanic eruptions around the globe that may have contributed to the devastation, according to a team of Univ. of California, Berkeley geophysicists.

Chemists cook up three-atom-thick electronic sheets

April 30, 2015 8:41 am | by Anne Ju, Cornell Univ. | News | Comments

Making thin films out of semiconducting materials is analogous to how ice grows on a windowpane: When the conditions are just right, the semiconductor grows in flat crystals that slowly fuse together, eventually forming a continuous film. This process of film deposition is common for traditional semiconductors like silicon or gallium arsenide, but Cornell Univ. scientists are pushing the limits for how thin they can go.

Advertisement

Students use smarts for damaged hearts

April 30, 2015 8:23 am | by Mike Williams, Rice Univ. | Videos | Comments

A smartphone app created by students at Rice Univ. may someday serve as the ultimate remote to help control the flow of blood through human hearts. The Flowtastic team of Rice senior engineering students created a combined software-hardware interface that works with an Android app to monitor and even control a high-tech pump that resides in the aorta and regulates the flow of blood.

The trillion-frame-per-second camera

April 30, 2015 8:09 am | by Rebecca B. Andersen, The Optical Society | News | Comments

When a crystal lattice is excited by a laser pulse, waves of jostling atoms can travel through the material at close to one sixth the speed of light, or approximately 28,000 mps. Scientists now have a new tool to take movies of such superfast movement in a single shot. Researchers from Japan have developed a new high-speed camera that can record events at a rate of more than one-trillion-frames-per-second.

Illuminating the dark zone

April 30, 2015 8:01 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

The human body is a cross between a factory and a construction zone; at least on the cellular level. Certain proteins act as project managers, which direct a wide variety of processes and determine the fate of the cell as a whole. One group of proteins called the WD-repeat (WDR) family helps a cell choose which of the thousands of possible gene products it should manufacture.

Chirping electrons: Cyclotron radiation from single electrons measured directly for first time

April 29, 2015 11:26 am | by PNNL | News | Comments

A year before Albert Einstein came up with the special theory of relativity, or E=mc2, physicists predicted the existence of something else: cyclotron radiation. Scientists predicted this radiation to be given off by electrons whirling around in a circle while trapped in a magnetic field. Over the last century, scientists have observed this radiation from large ensembles of electrons but never from individual ones. Until now.

Image of the day: Unmasking the secrets of Mercury

April 29, 2015 11:09 am | by NASA | News | Comments

If Mars is the Red Planet, then Mercury is the Rainbow Planet. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the solar system's innermost planet, unveiling beautiful images at the same time.

Advertisement

Why Drafting Standards Play a Vital Role in Engineering Communication?

April 24, 2015 9:10 am | by Gaurang Trivedi, Engineering Consultant, TrueCADD | Articles | Comments

Engineering drawings remain at a core for any manufacturing organization as they communicate ideas that are expected to be transformed into a profitable product. Most companies begin developing engineering drawings using international drafting standards. However, with the course of time, and as the idea begins to shape up, there’s always a deviation from the standards followed.

Real-Time Process Measurement: A Sea Change in Manufacturing

April 24, 2015 8:44 am | by Chad Lieber, VP of Product Development, Prozess Technologie and Brian Sullivan, Director of Sales, Valin Corp. | Articles | Comments

In a world where most information is available in an instant, plant managers and engineers are continuously trying to find ways to improve the efficiency of processes along the manufacturing line. Analyzing these processes can be a difficult task. Until recently, days of laboratory work were often required to analyze any given sample segment or process in a manufacturing line.

Portable MRI could aid wounded soldiers in Third World

April 24, 2015 8:37 am | by Kevin Roark, Los Alamos National Laboratory | News | Comments

Scientists at Los Alamos National Laboratory are developing an ultra-low-field magnetic resonance imaging system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the world's poorest regions.

Method takes quantum sensing to a new level

April 24, 2015 8:09 am | by Ron Walli, Oak Ridge National Laboratory | News | Comments

Thermal imaging, microscopy and ultra-trace sensing could take a quantum leap with a technique developed by researchers at Oak Ridge National Laboratory. Their work overcomes fundamental limitations of detection derived from the Heisenberg uncertainty principle, which states that the position and momentum of a particle cannot be measured with absolute precision.

Researchers use novel polarization to increase data speeds

April 24, 2015 7:53 am | by Jay Mwamba, The City College of New York | News | Comments

As the world’s exponentially growing demand for digital data slows the Internet and cell phone communication, City College of New York researchers may have just figured out a new way to increase its speed.

Advertisement

A silver lining

April 24, 2015 7:43 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

The silver used by Beth Gwinn’s research group at the Univ. of California, Santa Barbara, has value far beyond its worth as a commodity, even though it’s used in very small amounts. The group works with the precious metal to create nanoscale silver clusters with unique fluorescent properties. These properties are important for a variety of sensing applications including biomedical imaging.

Breaking Down Barriers: Streamlining Data Management to Boost Knowledge Sharing

April 23, 2015 3:10 pm | by Ian Peirson, Senior Solutions Consultant, IDBS | Articles | Comments

Research in the pharmaceutical and industrial science industries has become increasingly global, multidisciplinary and data-intensive. This is made clear by the evolution in patent approvals, which can also be considered a reliable measure of innovation in these industries. Innovation itself is a cumulative effect, which requires access to multiple fragments of knowledge from disparate sources and exchange of technology and ideas.

A new wrinkle for cell culture

April 23, 2015 9:53 am | by Kevin Stacey, Brown Univ. | News | Comments

Using a technique that introduces tiny wrinkles into sheets of graphene, researchers from Brown Univ. have developed new textured surfaces for culturing cells in the lab that better mimic the complex surroundings in which cells grow in the body.

Magnifying vibrations in bridges, buildings

April 23, 2015 9:40 am | by Jennifer Chu, MIT News Office | Videos | Comments

To the naked eye, buildings and bridges appear fixed in place, unmoved by forces like wind and rain. But in fact, these large structures do experience imperceptibly small vibrations that, depending on their frequency, may indicate instability or structural damage. Researchers have now developed a technique to “see” vibrations that would otherwise be invisible to the naked eye, combining high-speed video with computer vision techniques.

Tau Ceti: The next Earth? Probably not

April 23, 2015 8:37 am | by Nikki Cassis, Arizona State Univ. | News | Comments

As the search continues for Earth-size planets orbiting at just the right distance from their star, a region termed the habitable zone, the number of potentially life-supporting planets grows. In two decades we have progressed from having no extrasolar planets to having too many to search. Narrowing the list of hopefuls requires looking at extrasolar planets in a new way.

Nondestructive 3-D imaging of biological cells with sound

April 23, 2015 8:28 am | by American Institute of Physics | News | Comments

Much like magnetic resonance imaging is able to scan the interior of the human body, the emerging technique of "picosecond ultrasonics," a type of acoustic imaging, can be used to make virtual slices of biological tissues without destroying them. Now, a team of researchers in Japan and Thailand has shown that picosecond ultrasonics can achieve micron resolution of single cells, imaging their interiors in slices separated by 150 nm.

Scientists use nanoscale building blocks and DNA “glue” to shape 3-D superlattices

April 23, 2015 8:17 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Taking child's play with building blocks to a whole new level, the nanometer scale, scientists at Brookhaven National Laboratory have constructed 3-D "superlattice" multicomponent nanoparticle arrays where the arrangement of particles is driven by the shape of the tiny building blocks. The method uses linker molecules made of complementary strands of DNA to overcome the blocks' tendency to pack together.

3D-printed aerogels improve energy storage

April 23, 2015 8:03 am | by Anne M. Stark, Lawrence Livermore National Laboratory | News | Comments

A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing.

Gamers feel the glove

April 23, 2015 7:51 am | by Mike Williams, Rice Univ. | Videos | Comments

Rice Univ. engineering students are working to make virtual reality a little more real with their invention of a glove that allows a user to feel what they’re touching while gaming. The Hands Omni glove developed at Rice’s Oshman Engineering Design Kitchen will provide a way for gamers and others to feel the environments they inhabit through the likes of 3-D heads-ups displays.

Boiling down viscous flow

April 23, 2015 7:41 am | by Jennifer Chu, MIT News Office | News | Comments

Drizzling honey on toast can produce mesmerizing, meandering patterns, as the syrupy fluid ripples and coils in a sticky, golden thread. Dribbling paint on canvas can produce similarly serpentine loops and waves. The patterns created by such viscous fluids can be reproduced experimentally in a setup known as a “fluid mechanical sewing machine,” in which an overhead nozzle deposits a thick fluid onto a moving conveyor belt.

Technique can measure volumes of key lab-on-a-chip components

April 22, 2015 11:35 am | by NIST | News | Comments

Imagine shrinking tubes and beakers down to the size of a credit card. When engineers figured out how to do that two decades ago, they enabled complex tests to be performed with tiny "lab on a chip" technology. But until now, there has been no way to accurately measure the size of the tiny vessels they created. Now, scientists at NIST have found a potential solution to this longstanding manufacturing issue.

Putting a new spin on computing memory

April 22, 2015 11:23 am | by Britt Faulstick, Drexel Univ. | News | Comments

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data. Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading