Advertisement
Editors Picks
Subscribe to Editors Picks
View Sample

FREE Email Newsletter

New technique could harvest more of the sun’s energy

December 1, 2014 8:32 am | by Jessica Stoller-Conrad, Caltech | News | Comments

As solar panels become less expensive and capable of generating more power, solar energy is becoming a more commercially viable alternative source of electricity. However, the photovoltaic cells now used to turn sunlight into electricity can only absorb and use a small fraction of that light, and that means a significant amount of solar energy goes untapped. A new technology epresents a first step toward harnessing that lost energy.

Study details laser pulse effects on behavior of electrons

December 1, 2014 8:16 am | by Scott Schrage, University Communications, Univ. of Nebraska-Lincoln | News | Comments

By solving a 6-D equation that had previously stymied researchers, Univ. of Nebraska-Lincoln physicists have pinpointed the characteristics of a laser pulse that yields electron behavior they can predict and essentially control. It's long been known that laser pulses of sufficient intensity can produce enough energy to eject electrons from their ultra-fast orbits around an atom, causing ionization.

Matched hybrid systems may hold key to wider use of renewable energy

December 1, 2014 8:09 am | by David Stauth, Oregon State Univ. | News | Comments

The use of renewable energy in the U.S. could take a significant leap forward with improved storage technologies or more efforts to “match” different forms of alternative energy systems that provide an overall more steady flow of electricity. Historically, a major drawback to the use and cost-effectiveness of alternative energy systems has been that they are too variable. This lack of dependability is costly and inefficient.

Advertisement

A golden approach to low-cost fuel, chemical production

December 1, 2014 7:59 am | by Kim Thurler, Tufts Univ. | News | Comments

New catalysts designed and investigated by Tufts Univ. have the potential to greatly reduce processing costs in future fuels, such as hydrogen. The catalysts are composed of a unique structure of single gold atoms bound by oxygen to several sodium or potassium atoms and supported on non-reactive silica materials.

Microbullet hits confirm graphene’s strength

December 1, 2014 7:52 am | by Mike Williams, Rice Univ. | Videos | Comments

Graphene’s great strength appears to be determined by how well it stretches before it breaks, according to Rice Univ. scientists who tested the material’s properties by peppering it with microbullets. The 2-D carbon honeycomb discovered a decade ago is thought to be much stronger than steel. But the scientists didn’t need even a pound of graphene to prove the material is on average 10 times better than steel at dissipating kinetic energy.

Plasma shield

December 1, 2014 7:43 am | by Jennifer Chu, MIT News Office | News | Comments

High above Earth’s atmosphere, electrons whiz past at close to the speed of light. Such ultra-relativistic electrons, which make up the outer band of the Van Allen radiation belt, can streak around the planet in a mere five minutes, bombarding anything in their path. Exposure to such high-energy radiation can wreak havoc on satellite electronics, and pose serious health risks to astronauts.

Protons fuel graphene prospects

November 26, 2014 9:11 am | by Univ. of Manchester | News | Comments

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, Univ. of Manchester researchers have found. Published in Nature, the discovery could revolutionize fuel cells and other hydrogen-based technologies as they require a barrier that only allow protons to pass through.

“Giant” charge density disturbances discovered in nanomaterials

November 26, 2014 9:02 am | by Forschungszentrum Juelich | News | Comments

In metals such as copper or aluminum, so-called conduction electrons are able to move around freely, in the same way as particles in a gas or a liquid. If, however, impurities are implanted into the metal's crystal lattice, the electrons cluster together in a uniform pattern around the point of interference, resembling the ripples that occur when a stone is thrown into a pool of water.

Advertisement

Fast, low-cost DNA sequencing technology one step closer to reality

November 26, 2014 8:19 am | by Joe Caspermeyer, Biodesign Institute | News | Comments

A team of scientists from Arizona State Univ.’s Biodesign Institute and IBM’s T.J. Watson Research Center have developed a prototype DNA reader that could make whole genome profiling an everyday practice in medicine. Such technology could help usher in the age of personalized medicine, where information from an individual’s complete DNA and protein profiles could be used to design treatments specific to their individual makeup.

AUV provides first 3-D images of underside of Antarctic sea ice

November 26, 2014 8:03 am | by Peter West, NSF | News | Comments

A National Science Foundation-funded research team has successfully tested an autonomous underwater vehicle (AUV) that can produce high-resolution, 3-D maps of Antarctic sea ice. SeaBED, as the vehicle is known, measured and mapped the underside of sea-ice floes in three areas off the Antarctic Peninsula that were previously inaccessible.

A hybrid vehicle that delivers DNA

November 26, 2014 7:46 am | by Cory Nealon, Univ. at Buffalo | News | Comments

A new hybrid vehicle is under development. Its performance isn’t measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, influenza and other maladies. The technology is a biomedical advancement that could help unleash the potential of DNA vaccines, which despite much research, have yet to make a significant impact in the treatment of major illnesses.

Researchers develop heat-conducting plastic

November 25, 2014 8:59 pm | by Nicole Casal Moore, Univ. of Michigan | News | Comments

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat, but a Univ. of Michigan research team has made a plastic blend that does so 10 times better than its conventional counterparts. Plastics are inexpensive, lightweight and flexible, but because they restrict the flow of heat, their use is limited in technologies like computers, smartphones, cars or airplanes.

Space station's 3-D printer pops out first creation

November 25, 2014 8:43 pm | by Marcia Dunn, Associated Press | News | Comments

The first 3-D printer in space has popped out its first creation. The 3-D printer delivered to the International Space Station two months ago made a sample part for itself this week. It churned out a faceplate for the print head casing.

Advertisement

Blu-ray disc can be used to improve solar cell performance

November 25, 2014 8:23 pm | by Northwestern Univ. | News | Comments

Who knew Blu-ray discs were so useful? Already one of the best ways to store high-definition movies and television shows because of their high-density data storage, Blu-ray discs also improve the performance of solar cells, according to new research from Northwestern Univ.

Material snaps together like Legos

November 25, 2014 4:45 pm | by Brendan M. Lynch, KU News Service | News | Comments

Physicists at the Univ. of Kansas have fabricated an innovative substance from two different atomic sheets that interlock much like Lego toy bricks. The researchers said the new material, made of a layer of graphene and a layer of tungsten disulfide, could be used in solar cells and flexible electronics.

Testing the Limits of Indentation

November 25, 2014 4:26 pm | by Duanjie Li, PhD and Pierre Leroux, Nanovea | Articles | Comments

A tensile strength is a common materials test. Typical, a sample is subjected to controlled tension until it fails, providing valuable data for fundamental materials development or quality control. The key data acquired include maximum elongation, reduction in cross-section and ultimate tensile strength. Derived from these are a host of properties: Young’s modulus, yield strength, Poisson’s ratio and strain-hardening characteristics.

Trace Analysis of Carbon Dioxide in High-Purity Hydrofluorocarbon

November 25, 2014 4:15 pm | by Zhuangzhi “Max” Wang, Clifford M. Taylor, Shimadzu Scientific Instruments, Columbia, Md. | Articles | Comments

Fluorocarbon, a generic term for organic compounds with carbon-fluorine (C-F) bonding, is a chemical material used as a refrigerant in refrigerators and freezers and air conditioners in cars, buses, other vehicles and buildings. It’s also used as a cleaning agent for electronic components and precision parts.

Environmental “tipping points” key to predicting extinctions

November 25, 2014 11:35 am | by Tracey Peake, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have created a model that mimics how differently adapted populations may respond to rapid climate change. Their findings demonstrate that depending on a population’s adaptive strategy, even tiny changes in climate variability can create a “tipping point” that sends the population into extinction.

Breakthrough in flexible electronics enabled by inorganic-based laser lift-off

November 25, 2014 11:20 am | by The Korea Advanced Institute of Science and Technology (KAIST) | News | Comments

Flexible electronics have been touted as the next generation in electronics in various areas, ranging from consumer electronics to bio-integrated medical devices. In spite of their merits, insufficient performance of organic materials arising from inherent material properties and processing limitations in scalability have posed big challenges to developing all-in-one flexible electronics systems.

Pain in a dish

November 25, 2014 9:11 am | by Harvard Stem Cell Institute | News | Comments

After more than six years of intensive effort, and repeated failures that made the quest at times seem futile, Harvard Stem Cell Institute researchers at Boston Children’s Hospital and Harvard’s Dept. of Stem Cell and Regenerative Biology have successfully converted mouse and human skin cells into pain-sensing neurons that respond to a number of stimuli that cause acute and inflammatory pain.

Wireless electronic implants stop staph

November 25, 2014 8:41 am | by Kim Thurier, Tufts Univ. | News | Comments

Researchers at Tufts Univ., in collaboration with a team at the Univ. of Illinois at Urbana-Champaign, have demonstrated a resorbable electronic implant that eliminated bacterial infection in mice by delivering heat to infected tissue when triggered by a remote wireless signal. The silk and magnesium devices then harmlessly dissolved in the test animals. The technique had previously been demonstrated only in vitro.

Device could make large biological circuits practical

November 25, 2014 7:59 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have made great progress in recent years in the design and creation of biological circuits: systems that, like electronic circuits, can take a number of different inputs and deliver a particular kind of output. But while individual components of such biological circuits can have precise and predictable responses, those outcomes become less predictable as more such elements are combined.

Improving technology used in digital memory

November 25, 2014 7:48 am | by Scott Schrage, University Communications, Univ. of Nebraska-Lincoln | News | Comments

The improvements in random access memory (RAM) that have driven many advances of the digital age owe much to the innovative application of physics and chemistry at the atomic scale. Accordingly, a team led by Univ. of Nebraska-Lincoln researchers has employed a Nobel Prize-winning material and common household chemical to enhance the properties of a component primed for the next generation of high-speed, high-capacity RAM.

Brain’s reaction to virtual reality

November 25, 2014 7:42 am | by Stuart Wolpert, Univ. of California, Los Angeles | News | Comments

Univ. of California, Los Angeles neurophysicists have found that space-mapping neurons in the brain react differently to virtual reality than they do to real-world environments. Their findings could be significant for people who use virtual reality for gaming, military, commercial, scientific or other purposes.

Scientists save money with DIY microscope

November 25, 2014 7:35 am | by Brunel Univ. | News | Comments

Expensive tests for measuring everything from sperm motility to cancer diagnosis have just been made cheaper by a graduate student from Brunel Univ. London who hacked his own microscope. Adam Lynch, from the university’s College of Health and Life Sciences, created his own inverted microscope by adapting a cheap instrument he bought online to save himself time and money.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading