Advertisement
Editors Picks
Subscribe to Editors Picks
View Sample

FREE Email Newsletter

30 years and counting, the x-ray laser lives on

April 14, 2015 11:46 am | by Anne M. Stark, Lawrence Livermore National Laboratory | News | Comments

More than 50 years ago, when the laser was a mere five years old, laser physicists dreamed of the development of an x-ray laser to expand the frontier of knowledge. The concept goes back to the mid-1960s, when scientists realized that laser beams amplified with ions would have much shorter wavelengths than beams amplified with gas.

Recruiting the entire immune system to attack cancer

April 14, 2015 11:30 am | by Anne Trafton, MIT News Office | News | Comments

The human immune system is poised to spring into action at the first sign of a foreign invader, but it often fails to eliminate tumors that arise from the body’s own cells. Cancer biologists hope to harness that untapped power using an approach known as cancer immunotherapy. Orchestrating a successful immune attack against tumors has proven difficult so far, until now.

Taking aircraft manufacturing out of the oven

April 14, 2015 8:03 am | by Jennifer Chu, MIT News Office | News | Comments

Composite materials used in aircraft wings and fuselages are typically manufactured in large, industrial-sized ovens: Multiple polymer layers are blasted with temperatures up to 750 F, and solidified to form a solid, resilient material. Using this approach, considerable energy is required first to heat the oven, then the gas around it, and finally the actual composite.

Advertisement

On the road to spin-orbitronics

April 14, 2015 7:55 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Few among us may know what magnetic domains are, but we make use of them daily when we email files, post images or download music or video to our personal devices. Now a team of researchers at Lawrence Berkeley National Laboratory has found a new way of manipulating the walls that define these magnetic domains and the results could one day revolutionize the electronics industry.

Gold by special delivery intensifies cancer-killing radiation

April 14, 2015 7:47 am | by Kevin Stacey, Brown Univ. | News | Comments

Researchers have demonstrated a promising new way to increase the effectiveness of radiation in killing cancer cells. The approach involves gold nanoparticles tethered to acid-seeking compounds called pHLIPs. The pHLIPs (pH low-insertion peptides) home in on high acidity of malignant cells, delivering their nanoparticle passengers straight to the cells’ doorsteps.

Violent methane storms on Titan may solve dune direction mystery

April 14, 2015 7:28 am | by Peter Kelley, Univ. of Washington | News | Comments

With its thick, hazy atmosphere and surface rivers, mountains, lakes and dunes, Titan, Saturn’s largest moon, is one of the most Earth-like places in the solar system. As the Cassini-Huygens spacecraft examines Titan over many years, its discoveries bring new mysteries. One of those involves the seemingly wind-created sand dunes spotted by Cassini near the moon’s equator, and the contrary winds just above.

Science Connect: Flexibility Built In

April 13, 2015 10:09 am | by Lindsay Hock, Editor | Videos | Comments

Flexibility is critical when considering the future of science, research and lab environments. However, research needs down the road are difficult to predict, and flexibility is hard to define. Yet, reducing a facility’s flexibility may mean the loss of spare engineering capacities/infrastructures, services planning and space for anticipated growth and fit-out.

Team tightens bounds on quantum information “speed limit”

April 13, 2015 9:18 am | by NIST | News | Comments

If you're designing a new computer, you want it to solve problems as fast as possible. Just how fast is possible is an open question when it comes to quantum computers, but physicists at NIST have narrowed the theoretical limits for where that "speed limit" is. The research implies that quantum processors will work more slowly than some research has suggested.

Advertisement

Electrical control of quantum bits in silicon paves the way to large quantum computers

April 13, 2015 8:20 am | by Univ. of New South Wales | News | Comments

A Univ. of New South Wales-led research team has encoded quantum information in silicon using simple electrical pulses for the first time, bringing the construction of affordable large-scale quantum computers one step closer to reality. The team has successfully realized a new control method for future quantum computers.

Long-sought magnetic mechanism observed in exotic hybrid materials

April 13, 2015 8:08 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

Scientists have measured the subatomic intricacies of an exotic phenomenon first predicted more than 60 years ago. This so-called van Vleck magnetism is the key to harnessing the quantum quirks of topological insulators, and could lead to unprecedented electronics.

What happens underground when a missile or meteor hits

April 13, 2015 7:37 am | by Robin A. Smith, Duke Univ. | Videos | Comments

When a missile or meteor strikes the earth, the havoc above ground is obvious, but the details of what happens below ground are harder to see. Duke Univ. physicists have developed techniques that enable them to simulate high-speed impacts in artificial soil and sand in the lab, and then watch what happens underground close-up, in super slow motion.

Accelerating universe? Not so fast

April 13, 2015 7:29 am | by Daniel Stolte, Univ. of Arizona Communications | News | Comments

Certain types of supernovae, or exploding stars, are more diverse than previously thought, a Univ. of Arizona-led team of astronomers has discovered. The results have implications for big cosmological questions, such as how fast the universe has been expanding since the Big Bang.

Erupting electrodes

April 10, 2015 8:49 am | by Mary Beckman, PNNL | Videos | Comments

An eruption of lithium at the tip of a battery's electrode, cracks in the electrode's body and a coat forming on the electrode's surface reveal how recharging a battery many times leads to its demise. Using a powerful microscope to watch multiple cycles of charging and discharging under real battery conditions, researchers have gained insight into the chemistry that clogs rechargeable lithium batteries.

Advertisement

Chemists create nanoparticles that reflect nature’s patterns

April 10, 2015 7:55 am | by Jocelyn Duffy, Carnegie Mellon Univ. | News | Comments

Our world is full of patterns, from the twist of a DNA molecule to the spiral of the Milky Way. New research from Carnegie Mellon Univ. chemists has revealed that tiny, synthetic gold nanoparticles exhibit some of nature's most intricate patterns. Unveiling the kaleidoscope of these patterns was a Herculean task, and it marks the first time that a nanoparticle of this size has been crystallized and its structure mapped out atom by atom.

Study finds small solar eruptions can have profound effects on unprotected planets

April 10, 2015 7:48 am | by Susan Hendrix, NASA Goddard Space Flight Center | News | Comments

While no one yet knows what's needed to build a habitable planet, it's clear that the interplay between the sun and Earth is crucial for making our planet livable: a balance between a sun that provides energy and a planet that can protect itself from the harshest solar emissions. Our sun steadily emits light, energy and a constant flow of particles called the solar wind that bathes the planets as it travels out into space.

Graphene looks promising for future spintronic devices

April 10, 2015 7:39 am | by Chalmers Univ. of Technology | News | Comments

Researchers at Chalmers Univ. of Technology have discovered that large area graphene is able to preserve electron spin over an extended period, and communicate it over greater distances than had previously been known. This has opened the door for the development of spintronics, with an aim to manufacturing faster and more energy-efficient memory and processors in computers.

How complex carbon nanostructures form

April 9, 2015 4:46 pm | by Jeff Sossamon, Univ. of Missouri-Columbia | News | Comments

Carbon nanotubes (CNTs) are microscopic tubular structures that engineers “grow” through a process conducted in a high-temperature furnace. The forces that create the CNT structures known as “forests” often are unpredictable and are mostly left to chance. Now, a Univ. of Missouri researcher has developed a way to predict how these complicated structures are formed.

Detecting lysosomal pH with fluorescent probes

April 9, 2015 11:51 am | by Allison Mills, Michigan Technological Univ. | News | Comments

Lysosomes are the garbage disposals of animal cells. As the resources are limited in cells, organic materials are broken down and recycled a lot; and that’s what lysosomes do. Detecting problems with lysosomes is the focus of a new set of fluorescent probes developed by researchers at Michigan Technological Univ.

Science Connect: The Evolving Lab Environment

April 9, 2015 11:01 am | by Lindsay Hock, Editor | Videos | Comments

Science is evolving: It’s becoming more translational and multidisciplinary in nature. Just as science evolves, so do lab environments. Most lab environments are now designed to be more open and not just meant for one discipline—today, biologists may work next to chemists, or chemists work alongside physicists, and so on.

VEST helps deaf feel, understand speech

April 9, 2015 9:59 am | by Mike Williams, Rice Univ. | Videos | Comments

A vest that allows the profoundly deaf to “feel” and understand speech is under development by engineering students and their mentors at Rice Univ. and Baylor College of Medicine. Under the direction of neuroscientist David Eagleman, Rice students are refining a vest with dozens of embedded actuators that vibrate in specific patterns to represent words. The vest responds to input from a phone app that isolates speech from ambient sound.

A new view of the moon’s formation

April 9, 2015 8:25 am | by Matthew Wright, Univ. of Maryland | News | Comments

Within the first 150 million years after our solar system formed, a giant body roughly the size of Mars struck and merged with Earth, blasting a huge cloud of rock and debris into space. This cloud would eventually coalesce and form the moon. For almost 30 years, planetary scientists have been quite happy with this explanation, with one major exception.

Mixing up a batch of stronger metals

April 9, 2015 8:09 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

Just as a delicate balance of ingredients determines the tastiness of a cookie or cake, the specific ratio of metals in an alloy determines desirable qualities of the new metal, such as improved strength or lightness. A new class of alloys, called high entropy alloys, is unique in that these alloys contain five or more elements mixed evenly in near equal concentrations and have shown exceptional engineering properties.

Amniotic stem cells demonstrate healing potential

April 9, 2015 7:41 am | by Mike Williams, Rice Univ. | News | Comments

Scientists are using stem cells from amniotic fluid to promote the growth of functional blood vessels in healing hydrogels. In new experiments, the scientists combined versatile amniotic stem cells with injectable hydrogels used as scaffolds in regenerative medicine and proved they enhance the development of vessels needed to bring blood to new tissue and carry waste products away.

Can you make your own Game of Thrones sword using chemistry?

April 8, 2015 8:41 am | by American Chemical Society | Videos | Comments

The fantasy epic Game of Thrones is back April 12, 2015, and it is sure to be chock full of intrigue, indiscretions and, of course, swords. The most sought-after blades in Westeros are made from Valyrian steel, forged using ancient magic. But could you make your own Valyrian steel sword using real-life chemistry?

Carbon nanotube composites show promise for use in “unconventional” computing

April 8, 2015 8:17 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

As we approach the miniaturization limits of conventional electronics, alternatives to silicon-based transistors are being hotly pursued. Inspired by the way living organisms have evolved in nature to perform complex tasks with remarkable ease, a group of researchers from Durham Univ. and the Univ. of São Paulo-USP are exploring similar "evolutionary" methods to create information processing devices.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading