Advertisement
Editors Picks
Subscribe to Editors Picks
View Sample

FREE Email Newsletter

First-ever chemical bond established between carbon and a superheavy element

September 19, 2014 11:16 am | News | Comments

Chemical experiments with superheavy elements, which have atomic numbers beyond 104, are extremely challenging because they must be synthesized in a particle accelerator and they decay rapidly. An international team has, for the first time, established a chemical bond between a superheavy element, in this case element 106, seaborgium, and a carbon atom. The experiment opens the door to new investigations of relativity effects.

Engineer to build “hot” solar cells

September 19, 2014 8:12 am | by Rase McCry, Yale Univ. | News | Comments

Yale Univ. associate professor of electrical engineering Minjoo Larry Lee has been awarded $2,540,000 to develop dual-junction solar cells that can operate efficiently at extreme temperatures above 750 F. In addition to converting a portion of the sunlight directly into electricity, the solar cells will use the remainder of the light to heat high-temperature fluids that can drive a steam turbine or be stored for later use.

A new way to prevent the spread of devastating diseases

September 19, 2014 8:01 am | by Kimm Fesenmaier, Caltech | Videos | Comments

For decades, researchers have tried to develop broadly effective vaccines to prevent the spread of illnesses such as HIV, malaria and tuberculosis. While limited progress has been made along these lines, there are still no licensed vaccinations available that can protect most people from these devastating diseases. So what are immunologists to do when vaccines just aren't working?

Advertisement

Fingertip sensor gives robot dexterity

September 19, 2014 7:42 am | by Larry Hardesty, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology (MIT) and Northeastern Univ. have equipped a robot with a novel tactile sensor that lets it grasp a USB cable draped freely over a hook and insert it into a USB port. The sensor is an adaptation of a technology called GelSight, which was developed at MIT, and first described in 2009.

Sandia pioneers software for smart, sustainable institutions

September 18, 2014 8:13 am | by Stephanie Holinka, Sandia National Laboratories | News | Comments

Sandia National Laboratories’ Institutional Transformation (IX) model helps the federal laboratory reduce its energy consumption and could help other large institutions do the same. The IX model allows planners to experiment with energy conservation measures before making expensive changes. It also models operations-oriented conservation methods.

Team aims to improve plant-based battery with neutrons, simulation

September 18, 2014 8:02 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

When Orlando Rios first started analyzing samples of carbon fibers made from a woody plant polymer known as lignin, he noticed something unusual. The material’s microstructure—a mixture of perfectly spherical nanoscale crystallites distributed within a fibrous matrix—looked almost too good to be true.

Shrink-wrapping spacesuits

September 18, 2014 7:32 am | by Jennifer Chu, MIT News Office | News | Comments

For future astronauts, the process of suiting up may go something like this: Instead of climbing into a conventional, bulky, gas-pressurized suit, an astronaut may don a lightweight, stretchy garment, lined with tiny, muscle-like coils. She would then plug in to a spacecraft’s power supply, triggering the coils to contract and essentially shrink-wrap the garment around her body.

Ebola unlikely to become airborne

September 17, 2014 3:37 pm | by Lauran Neergaard - AP Medical Writer - Associated Press | News | Comments

It's incredibly unlikely that Ebola would mutate to spread through the air, and the best way to make sure it doesn't is to stop the epidemic, a top government scientist told concerned lawmakers Wednesday. "A virus that doesn't replicate, doesn't mutate," Dr. Anthony Fauci of the National Institutes of Health told a House Foreign Affairs subcommittee.

Advertisement

Scientists twist radio beams to send data

September 17, 2014 10:55 am | by Robert Perkins, Univ. of Southern California | News | Comments

Building on previous research that twisted light to send data at unheard-of speeds, scientists at the Univ. of Southern California (USC) have developed a similar technique with radio waves, reaching high speeds without some of the hassles that can go with optical systems. The researchers reached data transmission rates of 32 Gbps across 2.5 m of free space in a basement laboratory at USC.

Scientists refine formula for nanotube types

September 17, 2014 9:52 am | by Mike Williams, Rice Univ. | Videos | Comments

Many a great idea springs from talks over a cup of coffee. But it’s rare and wonderful when a revelation comes from the cup itself. Rice Univ. theoretical physicist Boris Yakobson, acting upon sudden inspiration at a meeting last year, obtained a couple of spare coffee cups from a server and a pair of scissors and proceeded to lay out—science fair-style—an idea that could have far-reaching implications for the nanotechnology industry.

Toward optical chips

September 17, 2014 9:42 am | by Larry Hardesty, MIT News Office | News | Comments

Chips that use light, rather than electricity, to move data would consume much less power. Of the three chief components of optical circuits—light emitters, modulators and detectors—emitters are the toughest to build. One promising light source for optical chips is molybdenum disulfide (MoS2), which has excellent optical properties when deposited as a single, atom-thick layer.

For electronics beyond silicon, a new contender emerges

September 17, 2014 8:13 am | by Caroline Perry, Harvard Univ. | News | Comments

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors can’t simply keep shrinking to meet the needs of powerful, compact devices; physical limitations like energy consumption and heat dissipation are too significant. Now, using a quantum material called a correlated oxide, researchers have achieved a reversible change in electrical resistance of eight orders of magnitude.

Nanoribbon film keeps glass ice-free

September 17, 2014 7:58 am | by Jade Boyd, Rice Univ. | News | Comments

Rice Univ. scientists who created a deicing film for radar domes have now refined the technology to work as a transparent coating for glass. The new work by Rice chemist James Tour and his colleagues could keep glass surfaces from windshields to skyscrapers free of ice and fog while retaining their transparency to radio frequencies (RF).

Advertisement

Novel capability enables first test of real turbine engine conditions

September 17, 2014 7:46 am | by Tona Kunz, Argonne National Laboratory | News | Comments

Manufactures of turbine engines for airplanes, automobiles and electric generation plants could expedite the development of more durable, energy-efficient turbine blades thanks to a partnership between Argonne National Laboratory, the German Aerospace Center and the universities of Central Florida and Cleveland State. The ability to operate turbine blades at higher temperatures improves efficiency and reduces energy costs.

How to hide like an octopus

September 17, 2014 7:33 am | by David L. Chandler, MIT News Office | News | Comments

Cephalopods are among nature’s most skillful camouflage artists, able to change both the color and texture of their skin within seconds to blend into their surroundings. Engineers have long struggled to duplicate this in synthetic materials. Now a team of researchers has come closer than ever to achieving that goal, creating a flexible material that can change its color or fluorescence and its texture at the same time.

First water-based nuclear battery can be used to generate electrical energy

September 16, 2014 6:51 pm | News | Comments

Betavoltaics, a battery technology that generates power from radiation, has been studied as an energy source since the 1950s. Now, for the first time using a water-based solution, researchers at the Univ. of Missouri have created a long-lasting and more efficient nuclear battery that could be used for many applications such as a reliable energy source in automobiles and also in complicated applications such as space flight.

Team is first to capture motion of single molecule in real time

September 16, 2014 6:23 pm | News | Comments

Chemists at the Univ. of California, Irvine, have scored a scientific first: capturing moving images of a single molecule as it vibrates, or “breathes,” and shifts from one quantum state to another. The groundbreaking achievement, led by Ara Apkarian, professor of chemistry, and Eric Potma, associate professor of chemistry, opens a window into the strange realm of quantum mechanics.

Researchers control surface tension to manipulate liquid metals

September 16, 2014 9:40 am | by Matt Shipman, News Services, North Carolina State Univ. | Videos | Comments

Researchers from North Carolina State Univ. have developed a technique for controlling the surface tension of liquid metals by applying very low voltages, opening the door to a new generation of reconfigurable electronic circuits, antennas and other technologies. The technique hinges on the fact that the oxide “skin” of the metal acts as a surfactant, lowering the surface tension between the metal and the surrounding fluid.

Elusive quantum transformations found near absolute zero

September 16, 2014 8:13 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

Heat drives classical phase transitions, but much stranger things can happen when the temperature drops. If phase transitions occur at the coldest temperatures imaginable, where quantum mechanics reigns, subtle fluctuations can dramatically transform a material. Scientists have explored this frigid landscape of absolute zero to isolate and probe these quantum phase transitions with unprecedented precision.

Want to print your own cell phone microscope for pennies?

September 16, 2014 8:01 am | by Susan Bauer, PNNL | Videos | Comments

At one o'clock in the morning, layers of warm plastic are deposited on the platform of the 3-D printer that sits on scientist Rebecca Erikson's desk. A small plastic housing, designed to fit over the end of a cell phone, begins to take shape. Pulling it from the printer, Erikson quickly pops in a tiny glass bead and checks the magnification.

Bound for robotic glory

September 16, 2014 7:56 am | by Jennifer Chu, MIT News Office | Videos | Comments

The fastest land animal on Earth, the cheetah, is able to accelerate to 60 mph in just a few seconds. As it ramps up to top speed, a cheetah pumps its legs in tandem, bounding until it reaches a full gallop. Now, researchers have developed an algorithm for bounding that they’ve successfully implemented in a fully functional robotic cheetah.

Taking a Big Bite Out of Malaria

September 15, 2014 9:49 am | by Lindsay Hock, Managing Editor | Articles | Comments

Malaria threatens more than 40% of the world’s population and kills up to 1.2 million people worldwide each year. Many of these deaths happen in Sub-Saharan Africa in children under the age of five and pregnant woman. The estimates for clinical infection is somewhere between 300 to 500 million people each year, worldwide.

X-rays unlock a protein’s SWEET side

September 15, 2014 8:41 am | by Justin Breaux, Argonne National Laboratory | News | Comments

Sugar is a vital source of energy. Understanding just how sugar makes its way into the cell could lead to the design of better drugs for diabetes patients and an increase in the amount of fruits and vegetables farmers are able to grow. Stanford Univ. researchers have recently uncovered one of these "pathways” into the cell by piecing together proteins slightly wider than the diameter of a strand of spider silk.

Blood-cleansing biospleen device developed for sepsis therapy

September 15, 2014 8:21 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

Things can go downhill fast when a patient has sepsis, a life-threatening condition in which bacteria or fungi multiply in a patient's blood—often too fast for antibiotics to help. A new device inspired by the human spleen and developed by a team at Harvard's Wyss Institute for Biologically Inspired Engineering may radically transform the way doctors treat sepsis.

Researchers roll “neat” nanotube fibers

September 15, 2014 7:57 am | by Mike Williams, Rice Univ. | News | Comments

The very idea of fibers made of carbon nanotubes is neat, but Rice Univ. scientists are making them neat—literally. The single-walled carbon nanotubes in new fibers created at Rice line up like a fistful of uncooked spaghetti through a process designed by chemist Angel Martí and his colleagues.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading