Advertisement
Editors Picks
Subscribe to Editors Picks
View Sample

FREE Email Newsletter

Nanocamera takes pictures at distances smaller than light’s wavelength

July 18, 2014 7:55 am | by Rick Kubetz, Engineering Communications Office | Videos | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have demonstrated that an array of novel gold, pillar-bowtie nanoantennas (pBNAs) can be used like traditional photographic film to record light for distances that are much smaller than the wavelength of light (for example, distances less than ~600 nm for red light). A standard optical microscope acts as a “nanocamera” whereas the pBNAs are the analogous film.

Getting a grip on robotic grasp

July 18, 2014 7:40 am | by Jennifer Chu, MIT News Office | Videos | Comments

Twisting a screwdriver, removing a bottle cap and peeling a banana are just a few simple tasks that are tricky to pull off single handedly. Now a new wrist-mounted robot can provide a helping hand—or rather, fingers. Researchers at Massachusetts Institute of Technology have developed a robot that enhances the grasping motion of the human hand.

Making a mental match: Pairing a mechanical device with stroke patients

July 17, 2014 9:36 am | by Jason Maderer, Georgia Institute of Technology | Videos | Comments

The repetitive facilitation exercise is one of the most common rehabilitation tactics for stroke patients attempting to regain wrist movement. Stroke hemiparesis individuals are not able to move that part of their body because they cannot create a strong enough neural signal that travels from the brain to the wrist.

Advertisement

Toward ultimate light efficiency on the cheap

July 17, 2014 9:27 am | by Kate McAlpine, Univ. of Michigan | News | Comments

Researchers have taken a major stride toward perfectly efficient lighting that is also relatively inexpensive and simple to make. The same material can also reveal the presence of water by changing color. Incandescent bulbs only turn 5% of the electricity they use into light, while fluorescent LEDs can produce light from up to 25% of the electrons that pass through them. Phosphorescent LEDs can turn every electron into a ray of light.

Understanding how the brain retrieves memories

July 17, 2014 8:07 am | by Donald B Johnston, LLNL | News | Comments

Lawrence Livermore National Laboratory scientists are developing electrode array technology for monitoring brain activity as part of a collaborative research project with the Univ. of California San Francisco (UC San Francisco) to better understand how the neural circuitry of the brain works during memory retrieval.

Powerful molecular sensor boosts optical signal by 100 billion times

July 15, 2014 4:45 pm | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. The new imaging method uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

Technology could screen for emerging viral diseases

July 15, 2014 11:58 am | by Stephen P Wampler, Lawrence Livermore National Laboratory | News | Comments

A microbe detection array technology developed by Lawrence Livermore National Laboratory (LLNL) scientists could provide a new rapid method for public health authorities to conduct surveillance for emerging viral diseases. This possible use of the Lawrence Livermore Microbial Detection Array (LLMDA) was studied by an international team of researchers from eight nations in a paper published in the PLOS ONE.

Physicists detect process even rarer than the long-sought Higgs particle

July 15, 2014 8:20 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Scientists running the ATLAS experiment at the Large Hadron Collider report the first evidence of a process that can be used to test the mechanism by which the recently discovered Higgs particle imparts mass to other fundamental particles. More rare than the production of the Higgs itself, this process also provides a new stringent test of the Standard Model of particle physics.

Advertisement

Labs characterize carbon for batteries

July 15, 2014 8:04 am | by Mike Williams, Rice Univ. | News | Comments

Lithium-ion batteries could benefit from a theoretical model created at Rice Univ. and Lawrence Livermore National Laboratory that predicts how carbon components will perform as electrodes. The model is based on intrinsic electronic characteristics of materials used as battery anodes. These include the material’s quantum capacitance and the material’s absolute Fermi level.

Getting a charge out of water droplets

July 15, 2014 7:53 am | by David L. Chandler, MIT News Office | News | Comments

Last year, Massachusetts Institute of Technology researchers discovered that when water droplets spontaneously jump away from superhydrophobic surfaces during condensation, they can gain electric charge in the process. Now, the same team has demonstrated that this process can generate small amounts of electricity that might be used to power electronic devices.

Phase-changing material could allow robots to switch between hard and soft states

July 14, 2014 7:35 am | by Helen Knight, MIT News correspondent | Videos | Comments

In the movie “Terminator 2,” the shape-shifting T-1000 robot morphs into a liquid state to squeeze through tight spaces or to repair itself when harmed. Now a phase-changing material built from wax and foam, and capable of switching between hard and soft states, could allow even low-cost robots to perform the same feat.

2014 R&D 100 Award winners announced

July 11, 2014 9:32 am | by Lindsay Hock, Managing Editor | Award Winners

The editors of R&D Magazine have announced the winners of the 52nd annual R&D 100 Awards, an international competition that recognizes the 100 most technologically significant products introduced into the marketplace over the past year. The R&D 100 Awards recognize excellence across a wide range of industries...

Sun-like stars reveal their ages

July 11, 2014 8:49 am | News | Comments

Defining what makes a star “sun-like" is as difficult as defining what makes a planet "Earth-like." A solar twin should have a temperature, mass and spectral type similar to our sun. We also would expect it to be about 4.5 billion years old. However, it is notoriously difficult to measure a star's age so astronomers usually ignore age when deciding if a star counts as "sun-like."

Advertisement

Uncertainty gives scientists new confidence in search for novel materials

July 11, 2014 8:19 am | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

Scientists at Stanford Univ. and the Dept. of Energy (DOE)’s SLAC National Accelerator Laboratory have found a way to estimate uncertainties in computer calculations that are widely used to speed the search for new materials for industry, electronics, energy, drug design and a host of other applications. The technique, reported in Science, should quickly be adopted in studies that produce some 30,000 scientific papers per year.

Agile Aperture Antenna tested on aircraft to survey ground emitters

July 11, 2014 8:02 am | by John Toon, Georgia Institute of Technology | News | Comments

The Georgia Tech Research Institute’s software-defined, electronically reconfigurable Agile Aperture Antenna (A3) has now been tested on the land, sea and air. Dept. of Defense representatives were in attendance during a recent event where two of the low-power devices, which can change beam directions in a thousandth of a second, were demonstrated in an aircraft during flight tests held in Virginia during February 2014.

Study pushes limits of ultra-fast nanodevices

July 10, 2014 9:17 am | by Univ. of Illinois, Urbana-Champaign | News | Comments

A recent study by researchers at the Univ. of Illinois at Urbana-Champaign provides new insights on the physical mechanisms governing the interplay of spin and heat at the nanoscale, and addresses the fundamental limits of ultra-fast spintronic devices for data storage and information processing.

New technologies fuel patient participation, data collection in research

July 10, 2014 9:06 am | by Duke Medicine News and Communications | News | Comments

The changing dynamic of health studies driven by “big data” research projects will empower patients to become active participants who provide real-time information such as symptoms, side effects and clinical outcomes, according to researchers at Duke Medicine. The analysislays out a new paradigm for health research, particularly comparative effectiveness studies that are designed to assess which therapies work best in clinical practice.

NASA finds friction from tides could help distant Earths survive, thrive

July 10, 2014 8:56 am | by Elizabeth Zubritsky, NASA Goddard Space Flight Center | News | Comments

As anybody who has started a campfire by rubbing sticks knows, friction generates heat. Now, computer modeling by NASA scientists shows that friction could be the key to survival for some distant Earth-sized planets traveling in dangerous orbits. The findings are consistent with observations that Earth-sized planets appear to be very common in other star systems.

Postcards from the photosynthetic edge

July 10, 2014 7:54 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A crucial piece of the puzzle behind nature’s ability to split the water molecule during photosynthesis that could help advance the development of artificial photosynthesis for clean, green and renewable energy has been provided by an international collaboration of scientists led by researchers with the Lawrence Berkeley National Laboratory and the SLAC National Accelerator Laboratory.

Technology illuminates colder objects in deep space

July 10, 2014 7:42 am | News | Comments

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern Univ. team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space. The new technology uses a type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb).

Engineering a more efficient fuel cell

July 9, 2014 10:38 am | by Glen Martin, Stanford New Service | News | Comments

Using high-brilliance x-rays, Stanford Univ. researchers track the process that fuel cells use to produce electricity, knowledge that will help make large-scale alternative energy power systems more practical and reliable. Fuel cells use oxygen and hydrogen as fuel to create electricity; if the process were run in reverse, the fuel cells could be used to store electricity, as well.  

Unprecedented detail of intact neuronal receptor offers blueprint for drug developers

July 9, 2014 8:23 am | by Tona Kunz, Argonne National Laboratory | News | Comments

Scientists succeeded in obtaining an unprecedented view of a type of brain cell receptor that is implicated in a range of neurological illnesses. The team of biologists at Cold Spring Harbor Laboratory used the Advanced Photon Source at Argonne National Laboratory to get an atomic-level picture of the intact NMDA (N-methyl, D-aspartate) receptor should serve as template and guide for the design of therapeutic compounds.

Scientists measure rock in a hard place

July 9, 2014 8:11 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Measuring the extreme pressures and temperatures of hydrothermal systems in the Earth's crust is no easy feat. However, Lawrence Livermore National Laboratory scientists have made a new tool that allows them to probe pressures up to 20 kbar (20,000 Earth atmospheres of pressure).

Gas hydrates by the slice

July 9, 2014 8:00 am | by Mike Williams, Rice Univ. | News | Comments

A decade of research by Rice Univ. scientists has produced a 2-D model to prove how gas hydrate, the “ice that burns,” is formed under the ocean floor. Gas hydrate has potential as a source of abundant energy, if it can be extracted and turned into usable form. It also has potential to do great harm.

Scientists uncover new compounds that could affect circadian rhythm

July 9, 2014 7:45 am | News | Comments

Scientists from The Scripps Research Institute have discovered a surprising new role for a pair of compounds—which have the potential to alter circadian rhythm, the complex physiological process that responds to a cycle of light and dark and is present in most living things. At least one of these compounds could be developed as a chemical probe to uncover new therapeutic approaches to a range of disorders, including diabetes and obesity.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading