Advertisement
Editors Picks
Subscribe to Editors Picks

The Lead

Microsecond Raman imaging might probe cells, organs for disease

March 30, 2015 1:03 pm | by Emil Venere, Purdue Univ. | News | Comments

A vibrational spectroscopic imaging technology that can take images of living cells could represent an advanced medical diagnostic tool for the early detection of cancer and other diseases. High-speed spectroscopic imaging makes it possible to observe the quickly changing metabolic processes inside living cells and to image large areas of tissue, making it possible to scan an entire organ.

Multi-scale Fractal-based Methods for Useful Characterizations of Surface Topographies

March 30, 2015 12:05 pm | by Christopher Brown, Surface Metrology Lab, Worcester Polytechnic Institute | Articles | Comments

Geometrically, fractals have forms, or features, that repeat at different sizes over ranges of...

High-tech method allows rapid imaging of functions in living brain

March 30, 2015 11:49 am | by Julie Flory, Washington Univ. of St. Louis | News | Comments

Researchers studying cancer and other invasive diseases rely on high-resolution imaging to see...

Roll up your screen and stow it away?

March 30, 2015 11:38 am | by George Hunka, Tel Aviv Univ. | News | Comments

From smartphones and tablets to computer monitors and interactive TV screens, electronic...

View Sample

FREE Email Newsletter

Comet dust: Mercury’s “invisible paint”

March 30, 2015 11:26 am | by Kevin Stacey, Brown Univ. | News | Comments

A team of scientists has a new explanation for the planet Mercury’s dark, barely reflective surface. In a paper published in Nature Geoscience, the researchers suggest that a steady dusting of carbon from passing comets has slowly painted Mercury black over billions of years.

Prototype nanoneedles generate new blood vessels in mice

March 30, 2015 11:20 am | by Imperial College London | News | Comments

Scientists have developed tiny nanoneedles that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice. The researchers, from Imperial College London and Houston Methodist Research Institute, hope their nanoneedle technique could ultimately help damaged organs and nerves to repair themselves and help transplanted organs to thrive.

Researchers develop computational model to simulate bacterial behavior

March 30, 2015 8:25 am | by Univ. of Notre Dame | News | Comments

Univ. of Notre Dame applied mathematician Mark Alber and environmental biotechnologist Robert Nerenberg have developed a new computational model that effectively simulates the mechanical behavior of biofilms. Their model may lead to new strategies for studying a range of issues from blood clots to waste treatment systems.

Advertisement

Recipe for antibacterial plastic

March 30, 2015 8:21 am | by Cal Powell, Univ. of Georgia | News | Comments

Bioplastics made from protein sources such as albumin and whey have shown significant antibacterial properties, findings that could eventually lead to their use in plastics used in medical applications such as wound healing dressings, sutures, catheter tubes and drug delivery, according to a recent study by the Univ. of Georgia College of Family and Consumer Sciences.

Nanoscale “worms” provide new route to nano-necklace structures

March 30, 2015 8:11 am | by John Toon, Georgia Institute of Technology | News | Comments

Researchers have developed a novel technique for crafting nanometer-scale necklaces based on tiny star-like structures threaded onto a polymeric backbone. The technique could provide a new way to produce hybrid organic-inorganic shish kebab structures from semiconducting, magnetic, ferroelectric and other materials that may afford useful nanoscale properties.

Solving molybdenum disulfide’s “thin” problem

March 30, 2015 7:55 am | by Amanda Morris, Northwestern Univ. | News | Comments

The promising new material molybdenum disulfide has an inherent issue that’s steeped in irony. The material’s greatest asset, its monolayer thickness, is also its biggest challenge. Monolayer molybdenum disulfide’s ultra-thin structure is strong, lightweight and flexible, making it a good candidate for many applications, such as high-performance, flexible electronics.

Precocious GEM

March 30, 2015 7:46 am | by Michael Baum, NIST | News | Comments

Scientists working at NIST and the NIH have devised and demonstrated a new, shape-shifting probe, about one-hundredth as wide as a human hair, which is capable of sensitive, high-resolution remote biological sensing that is not possible with current technology. If eventually put into widespread use, the design could have a major impact on research in medicine, chemistry, biology and engineering.

HIV can lodge quickly in brain after infection

March 27, 2015 10:29 am | by Bill Hathaway, Yale Univ. | News | Comments

HIV can establish itself in the brain as soon as four months after initial infection; a finding that dampens hopes of an impending cure for a disease that afflicts more than 35 million people. Within two years of infection, a genetically distinct version of HIV replicates in the brains of as many as one in four patients.

Advertisement

Antarctic ice shelves rapidly thinning

March 27, 2015 10:08 am | by Mario Aguilera, Univ. of California, San Diego | News | Comments

A new study led by Scripps Institution of Oceanography at the Univ. of California, San Diego, researchers has revealed that the thickness of Antarctica’s floating ice shelves has recently decreased by as much as 18% in certain areas over nearly two decades, providing new insights on how the Antarctic ice sheet is responding to climate change.

Big data allows computer engineers to find genetic clues in humans

March 27, 2015 8:26 am | by Washington Univ. in St. Louis | News | Comments

Big data: It's a term we read and hear about often, but is hard to grasp. Computer scientists at Washington Univ. in St. Louis tackled some big data about an important protein and discovered its connection in human history as well as clues about its role in complex neurological diseases.

Physicists solve low-temperature magnetic mystery

March 27, 2015 8:19 am | by Chelsea Whyte, Brookhaven National Laboratory | News | Comments

Researchers have made an experimental breakthrough in explaining a rare property of an exotic magnetic material, potentially opening a path to a host of new technologies. From information storage to magnetic refrigeration, many of tomorrow's most promising innovations rely on sophisticated magnetic materials, and this discovery opens the door to harnessing the physics that governs those materials. 

Chemists make new silicon-based nanomaterials

March 27, 2015 8:01 am | by Kevin Stacey, Brown Univ. | News | Comments

Chemists from Brown Univ. have found a way to make new 2-D, graphene-like semiconducting nanomaterials using an old standby of the semiconductor world: silicon. In a paper published in Nanoletters, the researchers describe methods for making nanoribbons and nanoplates from a compound called silicon telluride. The materials are pure, p-type semiconductors that could be used in a variety of electronic and optical devices.

Dark matter even darker than once thought

March 27, 2015 7:54 am | by Hubble Information Centre | News | Comments

Astronomers using observations from the NASA/ESA Hubble Space Telescope and NASA's Chandra X-ray Observatory have studied how dark matter in clusters of galaxies behaves when the clusters collide. The results, published in Science, show that dark matter interacts with itself even less than previously thought, and narrows down the options for what this mysterious substance might be.

Advertisement

Using magnetic fields to understand high-temperature superconductivity

March 27, 2015 7:44 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

Taking our understanding of quantum matter to new levels, scientists at Los Alamos National Laboratory are exposing high-temperature superconductors to very high magnetic fields, changing the temperature at which the materials become perfectly conducting and revealing unique properties of these substances.

Analysis sees many promising pathways for solar photovoltaic power

March 26, 2015 12:07 pm | by David L. Chandler, MIT News Office | News | Comments

In a broad new assessment of the status and prospects of solar photovoltaic technology, Massachusetts Institute of Technology researchers say that it is “one of the few renewable, low-carbon resources with both the scalability and the technological maturity to meet ever-growing global demand for electricity.”

Ancient Martian lake system records two water-related events

March 26, 2015 11:37 am | by Kevin Stacey, Brown Univ. | News | Comments

Researchers from Brown Univ. have completed a new analysis of an ancient Martian lake system in Jezero Crater, near the planet’s equator. The study finds that the onslaught of water that filled the crater was one of at least two separate periods of water activity in the region surrounding Jezero.

Quantum compute this

March 26, 2015 11:05 am | by Washington State Univ. | News | Comments

Washington State Univ. mathematicians have designed an encryption code capable of fending off the phenomenal hacking power of a quantum computer. Using high-level number theory and cryptography, the researchers reworked an infamous old cipher called the knapsack code to create an online security system better prepared for future demands.

Agricultural waste could be used as biofuel

March 26, 2015 10:55 am | by Univ. of East Anglia | News | Comments

Straw-powered cars could be a thing of the future thanks to new research from the Univ. of East Anglia. A new study pinpoints five strains of yeast capable of turning agricultural by-products, such as straw, sawdust and corncobs, into bioethanol. It is estimated that more than 400 billion litres of bioethanol could be produced each year from crop wastage.

Optimize Wireless Power by Comparing Consumer and Industrial Batteries

March 26, 2015 10:28 am | by Sol Jacobs, Tadiran Batteries | Articles | Comments

We live in an increasingly wireless world where self-powered devices are becoming integral to everyday life. A plethora of next-generation wireless technologies are seeing dramatic growth, involving both consumer and industrial applications. Some of the industrial applications include utility meter reading (AMR/AMI), wireless mesh networks, M2M and system control and data acquisition (SCADA) and data loggers, to name a few.

Copper atoms bring a potential new battery material to life

March 26, 2015 8:03 am | by Laura Mgrdichian, Brookhaven National Laboratory | News | Comments

Lithium-ion batteries are an important component of modern technology, powering phones, laptops, tablets and other portable devices when they are not plugged in. They even power electric vehicles. But to make batteries that last longer, provide more power, and are more energy efficient, scientists must find battery materials that perform better than those currently in use.

Desalination with nanoporous graphene membrane

March 26, 2015 7:53 am | by Dawn Levy, Oak Ridge National Laboratory | News | Comments

Less than 1% of Earth’s water is drinkable. Removing salt and other minerals from our biggest available source of water, seawater, may help satisfy a growing global population thirsty for fresh water for drinking, farming, transportation, heating, cooling and industry. But desalination is an energy-intensive process, which concerns those wanting to expand its application.

Thousands of atoms entangled with a single photon

March 26, 2015 7:40 am | by Jennifer Chu, MIT News Office | News | Comments

Physicists from Massachusetts Institute of Technology and the Univ. of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results represent the largest number of particles that have ever been mutually entangled experimentally.

Building a nanolaser using a single atomic sheet

March 25, 2015 12:33 pm | by Jennifer Langston, Univ. of Washington | News | Comments

Univ. of Washington scientists have built a new nanometer-sized laser that is energy efficient, easy to build and compatible with existing electronics. Lasers play essential roles in countless technologies, from medical therapies to metal cutters to electronic gadgets. But to meet modern needs in computation, communications, imaging and sensing, scientists are striving to create ever-smaller laser systems that also consume less energy.

Manufacturing process could yield better solar cells, faster chips

March 25, 2015 10:57 am | by Tom Abate, Stanford Engineering | Videos | Comments

Computer chips, solar cells and other electronic devices have traditionally been based on silicon, the most famous of the semiconductors, that special class of materials whose unique electronic properties can be manipulated to turn electricity on and off the way faucets control the flow of water. There are other semiconductors. Gallium arsenide is one such material and it has certain technical advantages over silicon.

Researchers find promising new biomarkers for concussion

March 25, 2015 10:50 am | by David Orenstein, Brown Univ. | News | Comments

By looking at the molecular aftermath of concussion in an unusual way, a team of researchers at Brown Univ. and the Lifespan health system has developed a candidate panel of blood biomarkers that can accurately signal mild traumatic brain injury within hours using standard, widely available lab arrays. The results appear in the Journal of Neurotrauma.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading