Advertisement
Editors Picks
Subscribe to Editors Picks

The Lead

Major step for implantable drug-delivery device

June 29, 2015 8:56 am | by Rob Matheson, MIT News Office | News | Comments

An implantable, microchip-based device may soon replace the injections and pills now needed to treat chronic diseases: Earlier this month, MIT spinout Microchips Biotech partnered with a pharmaceutical giant to commercialize its wirelessly controlled, implantable, microchip-based devices that store and release drugs inside the body over many years.

Scientists develop potential new class of cancer drugs in lab

June 29, 2015 8:48 am | by Saint Louis University | News | Comments

In research published in Cancer Cell, Thomas Burris, chair of pharmacology and physiology at...

Z machine solves Saturn’s 2-billion-year age problem

June 26, 2015 1:45 pm | by Sandia National Laboratories | News | Comments

Planets tend to cool as they get older, but Saturn is hotter than astrophysicists say it should...

Developing a better way to screen chemicals for cancer-causing effects

June 26, 2015 7:29 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

The vast majority of the thousands of chemicals in our homes and workplaces have not been tested...

View Sample

FREE Email Newsletter

Stretching a thin crystal to get better solar cells

June 26, 2015 6:59 am | by Tom Abate, Stanford Engineering | News | Comments

Nature loves crystals. Salt, snowflakes and quartz are three examples of crystals—materials characterized by the lattice-like arrangement of their atoms and molecules. Industry loves crystals, too. Electronics are based on a special family of crystals known as semiconductors, most famously silicon. To make semiconductors useful, engineers must tweak their crystalline lattice in subtle ways to start and stop the flow of electrons.

Delivering drugs to the right place

June 26, 2015 6:37 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

For the 12 million people worldwide who suffer from polycystic kidney disease (PKD), an inherited disorder with no known cure, a new treatment option may be on the horizon. PKD is a condition in which clusters of benign cysts develop within the kidneys. They vary in size, and as they accumulate more and more fluid, they can become very large. Among the common complications of PKD are high blood pressure and kidney failure.

A new means to killing harmful bacteria

June 25, 2015 11:50 am | by Helen Knight, MIT News correspondent | News | Comments

The global rise in antibiotic resistance is a growing threat to public health, damaging our ability to fight deadly infections such as tuberculosis. What’s more, efforts to develop new antibiotics are not keeping pace with this growth in microbial resistance, resulting in a pressing need for new approaches to tackle bacterial infection.

Advertisement

Pointing the way to crack-resistant metals

June 25, 2015 11:20 am | by Joe Kullman, Arizona State Univ. | News | Comments

Potential solutions to big problems continue to arise from research that is revealing how materials behave at the smallest scales. The results of a new study to understand the interactions of various metal alloys at the nanometer and atomic scales are likely to aid advances in methods of preventing the failure of systems critical to public and industrial infrastructure.

New conductive ink for electronic apparel

June 25, 2015 10:45 am | by Univ. of Tokyo | News | Comments

Univ. of Tokyo researchers have developed a new ink that can be printed on textiles in a single step to form highly conductive and stretchable connections. This new functional ink will enable electronic apparel such as sportswear and underwear incorporating sensing devices for measuring a range of biological indicators such as heart rate and muscle contraction.

Science Connect: Water Shortage, Reuse is a Social Problem

June 25, 2015 7:31 am | by Michelle Taylor, Editor-in-Chief, Laboratory Equipment and Jon Dipierro, Multimedia Production | Videos | Comments

In this one-minute video, hear from an expert in water sustainability regarding the economic and social challenges of water purification and reuse. Are these challenges holding back the potential of modern water technology?

Re-energizing antibiotics in the war against infections

June 24, 2015 5:00 pm | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | Videos | Comments

Antibiotics are the mainstay in the treatment of bacterial infections, and together with vaccines, have enabled the near eradication of infectious diseases in developed countries. However, the overuse of antibiotics has also led to an alarming rise in resistant bacteria that can outsmart antibiotics using different mechanisms. Some pathogenic bacteria are thus becoming almost untreatable.

Spintronics advance brings wafer-scale quantum devices closer to reality

June 24, 2015 4:00 pm | by Carla Reiter, Univ. of Chicago | News | Comments

An electronics technology that uses the "spin" of atomic nuclei to store and process information promises huge gains in performance over today's electron-based devices. But getting there is proving challenging. Now researchers at the Univ. of Chicago's Institute for Molecular Engineering have made a crucial step toward nuclear spintronic technologies.

Advertisement

Silica “spiky screws” could enhance industrial coatings, additive manufacturing

June 24, 2015 3:30 pm | by Heidi Hill, Oak Ridge National Laboratory | News | Comments

It took marine sponges millions of years to perfect their spike-like structures, but research mimicking these formations may soon alter how industrial coatings and 3-D printed to additively manufactured objects are produced. A new molecular paves the way for improved silica structure design by introducing microscopic, segmented screw-like spikes that can more effectively bond materials for commercial use.

Pinpointing the Onset of Metastasis

June 24, 2015 1:43 pm | by Lindsay Hock, Editor | Articles | Comments

Within the oncology community, a debate is raging about two controversial topics. The first is overdiagnosis. According to a recent report in The Wall Street Journal, some leading cancer experts say that zealous screening is finding ever-smaller abnormalities that are being labeled cancer or precancer with little or no justification.

New lenses grown layer-by-layer increase x-ray power

June 24, 2015 12:00 pm | by Justin Eure, Brookhaven National Laboratory | News | Comments

When you're working with the brightest x-ray light source in the world, it's crucial that you make use of as many of the photons produced as possible. That's why physicists at the National Synchrotron Light Source II (NSLS-II) are developing new lenses that focus x-ray beams to smaller spot sizes made up of more photons for better imaging resolution.

Eavesdropping on the body

June 24, 2015 11:00 am | by Tyler Irving, Univ. of Toronto | News | Comments

Biomedical engineers at the Univ. of Toronto have invented a new device that more quickly and accurately “listens in” on the chemical messages that tell our cells how to multiply. The tool improves our understanding of how cancerous growth begins, and could identify new targets for cancer medications.

Nanowire implants offer remote-controlled drug delivery

June 24, 2015 7:30 am | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

A team of researchers has created a new implantable drug-delivery system using nanowires that can be wirelessly controlled. The nanowires respond to an electromagnetic field generated by a separate device, which can be used to control the release of a preloaded drug. The system eliminates tubes and wires required by other implantable devices that can lead to infection and other complications.

Advertisement

Can heat be controlled as waves?

June 23, 2015 3:30 pm | by John Toon, Georgia Tech | News | Comments

A growing interest in thermoelectric materials and pressure to improve heat transfer from increasingly powerful microelectronic devices have led to improved theoretical and experimental understanding of how heat is transported through nanometer-scale materials. Recent research has focused on the possibility of using interference effects in phonon waves to control heat transport in materials.

New manufacturing approach slices lithium-ion battery cost in half

June 23, 2015 11:10 am | by David L. Chandler, MIT News Office | News | Comments

An advanced manufacturing approach for lithium-ion batteries, developed by researchers at Massachusetts Institute of Technology and at a spinoff company called 24M, promises to significantly slash the cost of the most widely used type of rechargeable batteries while also improving their performance and making them easier to recycle.

Single-catalyst water splitter produces clean-burning hydrogen 24/7

June 23, 2015 10:45 am | by Mark Shwartz, Stanford Univ. | Videos | Comments

Stanford Univ. scientists have invented a low-cost water splitter that uses a single catalyst to produce both hydrogen and oxygen gas 24 hrs a day, seven days a week. The device, described in Nature Communications, could provide a renewable source of clean-burning hydrogen fuel for transportation and industry.

Mirror-like display creates rich color pixels by harnessing ambient light

June 23, 2015 10:03 am | by The Optical Society | News | Comments

Using a simple structure comprising a mirror and an absorbing layer to take advantage of the wave properties of light, researchers at Qualcomm MEMS Technologies Inc. have developed a display technology that harnesses natural ambient light to produce an unprecedented range of colors and superior viewing experience.

Medication may stop drug and alcohol addiction

June 23, 2015 8:47 am | by Marc Airhart, Univ. of Texas at Austin | News | Comments

Researchers at The Univ. of Texas at Austin have successfully stopped cocaine and alcohol addiction in experiments using a drug already approved by the U.S. Food and Drug Administration to treat high blood pressure. If the treatment is proven effective in humans, it would be the first of its kind—one that could help prevent relapses by erasing the unconscious memories that underlie addiction.

New technology looks into the eye and brings cells into focus

June 23, 2015 8:26 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Eye doctors soon could use computing power to help them see individual cells in the back of a patient’s eye, thanks to imaging technology developed by engineers at the Univ. of Illinois. Such detailed pictures of the cells, blood vessels and nerves at the back of the eye could enable earlier diagnosis and better treatment for degenerative eye and neurological diseases.

Toward tiny, solar-powered sensors

June 23, 2015 8:18 am | by Larry Hardesty, MIT News Office | News | Comments

The latest buzz in the information technology industry regards “the Internet of things”, the idea that vehicles, appliances, civil-engineering structures, manufacturing equipment and even livestock would have their own embedded sensors that report information directly to networked servers, aiding with maintenance and the coordination of tasks.

Is salt the key to unlocking the interiors of Neptune, Uranus?

June 23, 2015 8:02 am | by Carnegie Institution | News | Comments

The interiors of several of our solar system’s planets and moons are icy, and ice has been found on distant extrasolar planets, as well. But these bodies aren’t filled with the regular kind of water ice that you avoid on the sidewalk in winter. The ice that’s found inside these objects must exist under extreme pressures and high-temperatures, and potentially contains salty impurities, too.

Science Connect: GMOs Could be Nutritionally Valuable, If Not for Intense Regulations

June 23, 2015 7:47 am | by Michelle Taylor, Editor-in-Chief, Laboratory Equipment and Jon Dipierro, Multimedia Production | Videos | Comments

In this one-minute video, hear from Nina Fedoroff, the former Science and Technology advisor to U.S. Secretaries of State Condoleezza Rice and Hillary Clinton, on why she blames intense regulatory demands for the lack of nutritionally valuable GMOs.

Sweeping lasers snap together nanoscale geometric grids

June 23, 2015 7:39 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

Down at the nanoscale, where objects span just billionths of a meter, the size and shape of a material can often have surprising and powerful electronic and optical effects. Building larger materials that retain subtle nanoscale features is an ongoing challenge that shapes countless emerging technologies. Now, scientists have developed a new technique to create nanostructured grids for functional materials with unprecedented versatility.

Destructive power of bubbles could lead to new industrial applications

June 22, 2015 1:31 pm | by Eleanor Nelsen, Virginia Tech | News | Comments

Virginia Tech engineers have shed light on what happens to a nearby particle when bubbles burst. Sunghwan Jung, an assistant professor of biomedical engineering and mechanics in the College of Engineering, has discovered new information about a phenomenon called cavitation, the process of bubble formation in a fluid like water.

Discovery paves way for new superconducting electronics

June 22, 2015 12:15 pm | by Kim McDonald, Univ. of California, San Diego | News | Comments

Physicists have developed a new way to control the transport of electrical currents through high-temperature superconductors. Their achievement, detailed in two separate scientific publications, paves the way for the development of sophisticated electronic devices capable of allowing scientists or clinicians to non-invasively measure the tiny magnetic fields in the heart or brain, and improve satellite communications.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading