Advertisement
Editors Picks
Subscribe to Editors Picks

The Lead

The Need for Speed

October 24, 2014 10:52 am | by Chris Bainter, U.S. National Sales Director and Ross Overstreet, Sr. Science Segment Engineer, FLIR, Goleta, Calif. | FLIR Systems, Inc. | Articles | Comments

Traditional forms of temperature measurement, such as thermocouples and spot pyrometers, often don’t offer the resolution or speed required to fully characterize high-speed thermal applications. This article explores the advantages of high-speed thermal measurement with infrared cameras.

Multiphysics Brings Vaccines to the Developing World

October 24, 2014 10:22 am | by Laura Bowen, COMSOL | Articles | Comments

In many areas of the developing world, there’s limited access to electricity, and many places...

High field magnet exceeds expectations with 26-T test

October 24, 2014 9:30 am | News | Comments

Certain quantum physical phenomena in matter can only be clearly visualized in the presence of...

Evaluating powerful batteries for modular grid energy storage

October 24, 2014 8:31 am | by Stephanie Holinka, Sandia National Laboratories | News | Comments

Sandia National Laboratories has begun laboratory-based characterization of TransPower’s...

View Sample

FREE Email Newsletter

Study reveals molecular structure of water at gold electrodes

October 24, 2014 8:19 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

When a solid material is immersed in a liquid, the liquid immediately next to its surface differs from that of the bulk liquid at the molecular level. This interfacial layer is critical to our understanding of a diverse set of phenomena. When the solid surface is charged, it can drive further changes in the interfacial liquid. However, elucidating the molecular structure at the solid-liquid interface under these conditions is difficult.

Synthetic biology on ordinary paper, results off the page

October 24, 2014 7:53 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

New achievements in synthetic biology, which will allow complex cellular recognition reactions to proceed outside of living cells, will dare scientists to dream big: There could one day be inexpensive, shippable and accurate test kits that use saliva or a drop of blood to identify specific disease or infection.

Army collaboration produces new test station for missile warning system

October 23, 2014 8:51 am | by John Toon, Georgia Institute of Technology | News | Comments

The AN/AAR-57 Common Missile Warning System (CMWS) helps protect Army aircraft from attack by shoulder-launched missiles and other threats. To keep this defensive system operating at maximum effectiveness, the Army periodically updates the software on the more than 1,000 AN/AAR-57 units in use around the world.

Advertisement

New insights on carbonic acid in water

October 23, 2014 8:42 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Though it garners few headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction of a second before changing into a mix of hydrogen and bicarbonate ions, carbonic acid has remained an enigma. A new study has yielded new information about carbonic acid with important implications for geological and biological concerns.

Strengthening thin-film bonds with ultra-fast data collection

October 23, 2014 8:29 am | by Michael Baum, NIST | News | Comments

When studying extremely fast reactions in ultra-thin materials, two measurements are better than one. A new research tool invented by researchers at Lawrence Livermore National Laboratory (LLNL), Johns Hopkins Univ. and NIST captures information about both temperature and crystal structure during extremely fast reactions in thin-film materials.

Microscopic “walkers” find their way across cell surfaces

October 23, 2014 8:14 am | by David L. Chandler, MIT News Office | News | Comments

Nature has developed a wide variety of methods for guiding particular cells, enzymes and molecules to specific structures inside the body: White blood cells can find their way to the site of an infection, while scar-forming cells migrate to the site of a wound. But finding ways of guiding artificial materials within the body has proven more difficult.

See-through sensors open new window into the brain

October 22, 2014 11:22 am | by Renee Meiller, Univ. of Wisconsin-Madison | News | Comments

Developing invisible implantable medical sensor arrays, a team of Univ. of Wisconsin-Madison engineers has overcome a major technological hurdle in researchers’ efforts to understand the brain. The team described its technology, which has applications in fields ranging from neuroscience to cardiac care and even contact lenses, in Nature Communications.

Simplifying Oil Content Measurements for the Petrochemical Industry

October 22, 2014 9:32 am | by Sandy Rintoul, Executive Vice President, Wilks-A Spectro Inc. Company | Articles | Comments

Measuring oil content in wastes is nothing new to the petrochemical industry. Whether it’s produced water from onshore or offshore sites, effluents from refineriers or drill cuttings and drilling mud, limits on hydrocarbon levels need to be met. With the increase of hydraulic fracturing in the U.S., more public attention has been focused on the need for regulations and limits.

Advertisement

Could I squeeze by you?

October 22, 2014 8:15 am | by Breehan Gerleman Lucchesi, Communications Specialist, Ames Laboratory | News | Comments

Scientists at Ames Laboratory have developed deeper understanding of the ideal design for mesoporous nanoparticles used in catalytic reactions, such as hydrocarbon conversion to biofuels. The research will help determine the optimal diameter of channels within the nanoparticles to maximize catalytic output.

Garnet ceramics ideal for high-energy lithium batteries

October 22, 2014 8:06 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The team used electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

New 3-D printing algorithms speed production, reduce waste

October 22, 2014 7:51 am | by Emil Venere, Purdue Univ. | News | Comments

New software algorithms have been shown to significantly reduce the time and material needed to produce objects with 3-D printers. Because the printers create objects layer-by-layer from the bottom up, this poses a challenge when printing overhanging or protruding features like a figure's outstretched arms. They must be formed using supporting structures—which are later removed—adding time and material to the process.

Researchers advance genome editing technique

October 22, 2014 7:41 am | by Mick Kulikowski, North Carolina State Univ. News Services | News | Comments

Customized genome editing has major potential for application in medicine, biotechnology, food and agriculture. Now, in a paper published in Molecular Cell, North Carolina State Univ. researchers and colleagues examine six key molecular elements that help drive this genome editing system, which is known as CRISPR-Cas.

Ebola airport checks expand; nurses get training

October 22, 2014 3:28 am | by Connie Cass - Associated Press - Associated Press | News | Comments

The federal government is closing a gap in Ebola screening at airports while states from New York to Texas to California work to get hospitals and nurses ready in case another patient turns up somewhere in the U.S. with the deadly disease. Under the rule going into effect Wednesday, air travelers from the West African nations must enter the U.S. through one of five airports doing special screenings and fever checks for Ebola.

Advertisement

Researchers take big data approach to estimate range of electric vehicles

October 21, 2014 10:58 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed new software that estimates how much farther electric vehicles can drive before needing to recharge. The new technique requires drivers to plug in their destination and automatically pulls in data on a host of variables to predict energy use for the vehicle.

If CD8 T cells take on one virus, they’ll fight others too

October 21, 2014 10:36 am | by David Orenstein, Brown Univ. | News | Comments

Scientists think of CD8 T cells as long-lived cells that become tuned to fight just one pathogen, but a new study finds that once CD8 T cells fight one pathogen, they also join the body’s “innate” immune system, ready to answer the calls of the cytokine signals that are set off by a wide variety of infections.

Puzzling new behavior found in high-temperature superconductors

October 21, 2014 9:11 am | by SLAC Office of Communications | News | Comments

Research by an international team of scientists has uncovered a new, unpredicted behavior in a copper oxide material that becomes superconducting at relatively high temperatures. This new phenomenon presents a challenge to scientists seeking to understand its origin and connection with high-temperature superconductivity. Their ultimate goal is to design a superconducting material that works at room temperature.

Starfish shell-mimicking crystals could advance 3-D printing pills

October 21, 2014 8:19 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a design that mimics a hard-to-duplicate texture of starfish shells, Univ. of Michigan engineers have made rounded crystals that have no facets. The team calls the crystals "nanolobes". The nanolobes' shape and the way they're made have promising applications. The geometry could potentially be useful to guide light in advanced LEDs, solar cells and non-reflective surfaces.

High blood-sugar levels may harden heart valves

October 21, 2014 8:05 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. bioengineers have found new evidence of a possible link between diabetes and the hardening of heart valves. A Rice laboratory, in collaboration with the Univ. of Texas Health Science Center at Houston Medical School, discovered that the interstitial cells that turn raw materials into heart valves need just the right amount of nutrients for proper metabolic function.

Getting the salt out

October 21, 2014 7:54 am | by David L. Chandler, MIT News Office | News | Comments

The boom in oil and gas produced through hydraulic fracturing, or fracking, is seen as a boon for meeting U.S. energy needs. But one byproduct of the process is millions of gallons of water that’s much saltier than seawater, after leaching salts from rocks deep below the surface. Now researchers at Massachusetts Institute of Technology and in Saudi Arabia say they have found an economical solution for removing the salt from this water.

Solutions in Search of Problems: Spectroscopy Takes Flight

October 20, 2014 10:07 am | by Yvette Mattley, PhD, Senior Applications Specialist and Rob Morris, Marketing Operations Manager, Ocean Optics | Ocean Optics | Articles | Comments

Spectral sensing is so pervasive that most take it for granted. Even miniature spectrometers have been embraced by late adopters. Yet, spectroscopy has moved beyond routine laboratory and test measurements to take on ever-more sophisticated applications. In this article we explore how familiar spectral sensing technologies—and new ways to exploit them—are today addressing a wider range of measurement problems than ever.

Crystallizing the DNA nanotechnology dream

October 20, 2014 9:46 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

DNA has garnered attention for its potential as a programmable material platform that could spawn entire new and revolutionary nanodevices in computer science, microscopy, biology and more. Researchers have been working to master the ability to coax DNA molecules to self-assemble into the precise shapes and sizes needed in order to fully realize these nanotechnology dreams.

Goldilocks principle wrong for particle assembly

October 20, 2014 9:32 am | by New York Univ. | News | Comments

Microscopic particles that bind under low temperatures will melt as temperatures rise to moderate levels, but re-connect under hotter conditions, a team of New York Univ. scientists has found. Their discovery points to new ways to create "smart materials," cutting-edge materials that adapt to their environment by taking new forms, and to sharpen the detail of 3-D printing.

R&D 100 Award Video: Calcium Loop for Carbon Capture

October 20, 2014 9:07 am | by Lindsay Hock, Managing Editor | Videos | Comments

Carbon capture and sequestration isn’t only suitable for new power plants, but more essential in retrofitting existing ones. Because of this retrofitting nature, carbon capture and sequestration is regarded by the International Energy Agency as the single technology most capable of carbon dioxide reduction in the world and could account for more than 20% of global carbon dioxide abatement by 2050.

Protons hog the momentum in neutron-rich nuclei

October 20, 2014 8:36 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using data from nuclear physics experiments, researchers have now shown for the first time that this phenomenon exists in nuclei heavier than carbon, including aluminum, iron and lead.

A 3-D map of the adolescent universe

October 20, 2014 8:18 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Using extremely faint light from galaxies 10.8-billion light-years away, scientists have created one of the most complete, 3-D maps of a slice of the adolescent universe. The map shows a web of hydrogen gas that varies from low to high density at a time when the universe was made of a fraction of the dark matter we see today.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading