Advertisement
Sections
Subscribe to Sections

The Lead

Glucose “control switch” in the brain key to both diabetes types

July 31, 2014 9:36 am | by Karen N. Peart, Yale Univ. | News | Comments

Researchers at Yale School of Medicine have pinpointed a mechanism in part of the brain that is key to sensing glucose levels in the blood, linking it to both type 1 and type 2 diabetes. The findings are published in the Proceedings of the National Academies of Sciences.

Toward a home test for detecting potentially dangerous levels of caffeine

July 31, 2014 8:37 am | by American Chemical Society | News | Comments

The shocking news of an Ohio teen who died of a caffeine overdose in May highlighted the...

Researchers find protein that fuels repair of treatment-resistant cancer cells

July 31, 2014 8:06 am | by Laura Bailey, Univ. of Michigan | News | Comments

Imagine you're fighting for your life but no matter how hard you hit, your opponent won't go...

Dissolvable fabric loaded with medicine might offer protection against HIV

July 30, 2014 1:54 pm | by Michelle Ma, Univ. of Washington | News | Comments

Soon, protection from HIV infection could be as simple as inserting a medicated, disappearing...

View Sample

FREE Email Newsletter

Scientists separate a particle from its properties

July 30, 2014 9:59 am | News | Comments

Researchers in Austria have performed the first separation of a particle from one of its properties. The study showed that in an interferometer a neutron’s magnetic moment could be measured independently of the neutron itself, thereby marking the first experimental observation of a new quantum paradox known as the “Cheshire cat”.

World’s smallest propeller could be used for microscopic medicine

July 30, 2014 9:29 am | by Kevin Hattori, American Technion Society | News | Comments

An Israeli and German research team have succeeded in creating a tiny screw-shaped propeller that can move in a gel-like fluid, mimicking the environment inside a living organism. The filament that makes up the propeller, made of silica and nickel, is only 70 nm in diameter. The entire propeller is just 400 nm long.

Huge waves measured for first time in Arctic Ocean

July 30, 2014 8:03 am | by Hannah Hickey, Univ. of Washington | News | Comments

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water that is predicted to extend across the whole Arctic Ocean before the middle of this century. Storms thus have the potential to create Arctic swell. A Univ. of Washington researcher made the first study of waves in the middle of the Arctic Ocean, and detected house-sized waves during a September 2012 storm.

Advertisement

Brainwaves can predict audience reaction for TV programming

July 30, 2014 7:47 am | by Jason Maderer, Georgia Institute of Technology | News | Comments

Media and marketing experts have long sought a reliable method of forecasting responses from the general population to future products and messages. According to a study conducted at the City College of New York in partnership with Georgia Tech, it appears that the brain responses of just a few individuals are a remarkably strong predictor.

Tough foam from tiny sheets

July 29, 2014 12:59 pm | by Mike Williams, Rice Univ. | News | Comments

Tough, ultra-light foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice Univ. In microscopic images, the foam dubbed “GO-0.5BN” looks like a nanoscale building, with floors and walls that reinforce each other. The structure consists of a pair of 2-D materials: floors and walls of graphene oxide that self-assemble with the assistance of hexagonal boron nitride platelets.

A new way to make microstructured surfaces

July 29, 2014 12:49 pm | by David L. Chandler, MIT News Office | News | Comments

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel 3-D textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a variety of useful properties—including controllable mechanical stiffness and strength, or the ability to repel water in a certain direction.

Lead pollution beat explorers to South Pole, persists today

July 29, 2014 9:25 am | by Justin Broglio, Desert Research Institute | News | Comments

Norwegian explorer Roald Amundsen became the first man to reach the South Pole in December 1911. More than 100 years later, an international team of scientists that includes a NASA researcher has proven that air pollution from industrial activities arrived to the planet’s southern pole long before any human.

Stem cell advance may increase efficiency of tissue regeneration

July 29, 2014 8:52 am | by Jeffrey Norris, UCSF | News | Comments

A new stem cell discovery might one day lead to a more streamlined process for obtaining stem cells, which in turn could be used in the development of replacement tissue for failing body parts, according to Univ. of California, San Francisco scientists who reported the findings in Cell.

Advertisement

Forced mutations doom HIV

July 29, 2014 8:16 am | by Anne Trafton, MIT News Office | News | Comments

Fifteen years ago, Massachusetts Institute of Technology professor John Essigmann and colleagues from the Univ. of Washington had a novel idea for an HIV drug. They thought if they could induce the virus to mutate uncontrollably, they could force it to weaken and eventually die out—a strategy that our immune system uses against many viruses.

Cagey material acts as alcohol factory

July 28, 2014 2:37 pm | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed and patented by researchers at Lawrence Berkeley National Laboratory, is making this process a little easier.

Scientists create model “bead-spring” chains with tunable properties

July 28, 2014 2:25 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. researchers are using magnetic beads and DNA “springs” to create chains of varying flexibility that can be used as microscale models for polymer macromolecules. The experiment is visual proof that “bead-spring” polymers, introduced as theory in the 1950s, can be made as stiff or as flexible as required and should be of interest to materials scientists who study the basic physics of polymers.

Researchers discover cool-burning flames in space

July 28, 2014 2:04 pm | by Ioana Patringenaru, Jacobs School of Engineering | Videos | Comments

A team of international researchers has discovered a new type of cool burning flames that could lead to cleaner, more efficient engines for cars. The discovery was made during a series of experiments on the International Space Station by a team led by Forman Williams, a professor of mechanical and aerospace engineering at the Univ. of California, San Diego.

UConn makes 3-D copies of antique instrument parts

July 28, 2014 10:57 am | by Pat Eaton-Robb, Associated Press | News | Comments

The medical practice of Dr. Robert Howe, a reproductive endocrinologist in Massachusetts, introduced him to how computerized tomography could make precise 3-D images of body parts. As a student of music history, he realized the same technology could help him study delicate musical instruments from the past. With the help of engineers, these rare instruments are now being both imaged and printed printed in 3-D.

Advertisement

Understanding the source of extra-large capacities in promising Li-ion battery electrodes

July 28, 2014 8:15 am | by Laura Mgrdichian, Brookhaven National Laboratory | News | Comments

Lithium (Li)-ion batteries power almost all of the portable electronic devices that we use every day, including smartphones, cameras, toys and even electric cars. Researchers across the globe are working to find materials that will lead to safe, cheap, long-lasting and powerful Li-ion batteries.

Building invisible materials with light

July 28, 2014 7:51 am | News | Comments

A new method of building materials using light, developed by researchers at the Univ. of Cambridge, could one day enable technologies that are often considered the realm of science fiction. Although cloaked starships won’t be a reality for quite some time, the technique which researchers have developed for constructing materials with building blocks a few nanometers across can be used to control the way that light flies through them.

Magnets may act as wireless cooling agents

July 28, 2014 7:40 am | by Jennifer Chu, MIT News Office | News | Comments

The magnets cluttering the face of your refrigerator may one day be used as cooling agents, according to a new theory. The theory describes the motion of magnons. In addition to magnetic moments, magnons also conduct heat; from their equations, the researchers found that when exposed to a magnetic field gradient, magnons may be driven to move from one end of a magnet to another, carrying heat with them and producing a cooling effect.

Study reveals new characteristics of complex oxide surfaces

July 25, 2014 8:25 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

A novel combination of microscopy and data processing has given researchers at Oak Ridge National Laboratory (ORNL) an unprecedented look at the surface of a material known for its unusual physical and electrochemical properties. The research team led by ORNL’s Zheng Gai examined how oxygen affects the surface of a perovskite manganite, a complex material that exhibits dramatic magnetic and electronic behavior.

Molecule could lead to new way to repair tendons

July 25, 2014 8:15 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

It’s an all-too familiar scenario for many people. You sprain your ankle or twist your knee. If you’re an adult, the initial pain is followed by a long road of recovery, with no promise that the torn ligament or tendon will ever regain its full strength. That’s because tendon and ligament cells in adults produce little collagen, the fibrous protein that is used to build new tendon and ligament tissue.

Collecting just the right data

July 25, 2014 7:56 am | by Larry Hardesty, MIT News Office | News | Comments

Much artificial intelligence research addresses the problem of making predictions based on large data sets. An obvious example is the recommendation engines at retail sites like Amazon and Netflix. But some types of data are harder to collect than online click histories. And in other applications there may just not be enough time to crunch all the available data.

Novel virus discovered in half the world’s population

July 25, 2014 7:14 am | by Michael Price, San Diego State Univ. | Videos | Comments

Virologists and biologists in California have identified a highly abundant, never-before-described virus that could play a major role in obesity, diabetes. The virus, named crAssphage, has about 10 times as many base pairs of DNA as HIV and infects one of the most common types of gut bacteria. This phylum of bacteria is thought to be connected with obesity, diabetes and other gut-related diseases.

Just 8.2% of our DNA is “functional”

July 25, 2014 6:59 am | News | Comments

According to recently published research, scientists in the U.K. say that just 8.2% of human DNA is likely to be doing something important, or “functional”. This figure is very different from one given in 2012, when some scientists involved in the ENCODE (Encyclopedia of DNA Elements) project stated that 80% of our genome has some biochemical function.

The microbes make the sake brewery

July 25, 2014 6:56 am | News | Comments

According to recent research that marks the first time investigators have taken a microbial census of a sake brewery, the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor. This means a sake brewery has its own microbial terroir.

Discovery is key to metal wear in sliding parts

July 24, 2014 9:24 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have discovered a previously unknown mechanism for wear in metals: a swirling, fluid-like microscopic behavior in a solid piece of metal sliding over another. The findings could be used to improve the durability of metal parts in numerous applications.

Diseases of another kind

July 24, 2014 8:10 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

The drought that has the entire country in its grip is affecting more than the color of people’s lawns. It may also be responsible for the proliferation of a heat-loving amoeba commonly found in warm freshwater bodies, such as lakes, rivers and hot springs, which the drought has made warmer than usual this year.

“Comb-on-a-chip” powers new atomic clock design

July 24, 2014 7:52 am | News | Comments

Researchers from NIST and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale frequency comb, or a microcomb. The microcomb clock, featured in Optica, is the first demonstration of all-optical control of the microcomb, and its accurate conversion of optical frequencies to lower microwave frequencies.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading