Advertisement
Sections
Subscribe to Sections

The Lead

NASA missions monitor a waking black hole

July 1, 2015 7:00 am | by NASA | News | Comments

NASA's Swift satellite detected a rising tide of high-energy X-rays from the constellation Cygnus on June 15, just before 2:32 p.m. EDT. The outburst came from V404 Cygni, a binary system located about 8,000 light-years away that contains a black hole. Every couple of decades the black hole fires up in an outburst of high-energy light, becoming an X-ray nova. Until the Swift detection, it had been slumbering since 1989.

Water used for hydraulic fracturing varies widely across United States

July 1, 2015 7:00 am | by American Geophysical Union | News | Comments

The amount of water required to hydraulically fracture oil and gas wells varies widely across...

Scientists propose new model of mysterious barrier to fusion known as the 'density limit'

July 1, 2015 7:00 am | by Princeton Plasma Physics Laboratory | News | Comments

Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have...

Chemists characterize 3-D macroporous hydrogels

July 1, 2015 7:00 am | by Carnegie Mellon University | News | Comments

Carnegie Mellon University chemists have developed two novel methods to characterize 3-...

View Sample

FREE Email Newsletter

New model of cosmic stickiness favors 'Big Rip' demise of universe

July 1, 2015 7:00 am | by Vanderbilt University | News | Comments

The universe can be a very sticky place, but just how sticky is a matter of debate. That is because for decades cosmologists have had trouble reconciling the classic notion of viscosity based on the laws of thermodynamics with Einstein's general theory of relativity. However, a team from Vanderbilt University has come up with a fundamentally new mathematical formulation of the problem that appears to bridge this long-standing gap.

New method of quantum entanglement vastly increases how much information can be carried in a photon

June 30, 2015 8:51 am | by UCLA | News | Comments

A team of researchers led by UCLA electrical engineers has demonstrated a new way to harness light particles, or photons, that are connected to each other and act in unison no matter how far apart they are  — a phenomenon known as quantum entanglement.

Graphene flexes its electronic muscles

June 30, 2015 8:47 am | by Mike Williams, Rice University | News | Comments

Flexing graphene may be the most basic way to control its electrical properties, according to calculations by theoretical physicists at Rice University and in Russia.

Advertisement

New nanogenerator harvests power from rolling tires

June 30, 2015 8:40 am | by University of Wisconsin-Madison | News | Comments

A group of University of Wisconsin-Madison engineers and a collaborator from China have developed a nanogenerator that harvests energy from a car's rolling tire friction.

Physicists shatter stubborn mystery of how glass forms

June 30, 2015 8:37 am | by University of Waterloo | News | Comments

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists for decades.

Sandia's Z machine receives funding aimed at fusion energy

June 30, 2015 8:35 am | by DOE, Sandia National Laboratories | News | Comments

A two-year, $3.8 million award has been received by Sandia National Laboratories and the University of Rochester's Laboratory for Laser Energetics (LLE) to hasten the day of low-cost, high-yield fusion reactions for energy purposes.

A deep, dark mystery

June 30, 2015 8:31 am | by UC Santa Barbara | News | Comments

UC Santa Barbara geologist Jim Boles has found evidence of helium leakage from the Earth's mantle along a 30-mile stretch of the Newport-Inglewood Fault Zone in the Los Angeles Basin.

Major step for implantable drug-delivery device

June 29, 2015 8:56 am | by Rob Matheson, MIT News Office | News | Comments

An implantable, microchip-based device may soon replace the injections and pills now needed to treat chronic diseases: Earlier this month, MIT spinout Microchips Biotech partnered with a pharmaceutical giant to commercialize its wirelessly controlled, implantable, microchip-based devices that store and release drugs inside the body over many years.

Advertisement

Scientists develop potential new class of cancer drugs in lab

June 29, 2015 8:48 am | by Saint Louis University | News | Comments

In research published in Cancer Cell, Thomas Burris, chair of pharmacology and physiology at Saint Louis University, has, for the first time, found a way to stop cancer cell growth by targeting the Warburg Effect, a trait of cancer cell metabolism that scientists have been eager to exploit.

Tomorrow will be one second longer

June 29, 2015 8:39 am | News | Comments

The day will officially be a bit longer than usual on Tuesday, June 30, 2015, because an extra second, or "leap" second, will be added.

Z machine solves Saturn’s 2-billion-year age problem

June 26, 2015 1:45 pm | by Sandia National Laboratories | News | Comments

Planets tend to cool as they get older, but Saturn is hotter than astrophysicists say it should be without some additional energy source. The unexplained heat has caused a two-billion-year discrepancy for computer models estimating Saturn's age.

Developing a better way to screen chemicals for cancer-causing effects

June 26, 2015 7:29 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

The vast majority of the thousands of chemicals in our homes and workplaces have not been tested to determine if they cause cancer. That’s because today’s options are lacking. Rodent tests are too slow, and cell culture tests don’t replicate how cells interact in the body, so their relevance to cancer is limited. Scientists from Lawrence Berkeley National Laboratory have set out to change that.

All-plastic solar cell could help power future flexible electronics

June 26, 2015 7:06 am | by American Chemical Society | News | Comments

If you picture a solar panel, it’s most likely dark blue or black, and rigid and flat. Now imagine one that’s semi-transparent, ultra-thin and bendable. Scientists are closing in on making the latter version a reality. They report in ACS Applied Materials & Interfaces the development of a see-through, bendable solar cell made entirely out of plastic. The device could help power the coming wave of flexible electronics.

Advertisement

Stretching a thin crystal to get better solar cells

June 26, 2015 6:59 am | by Tom Abate, Stanford Engineering | News | Comments

Nature loves crystals. Salt, snowflakes and quartz are three examples of crystals—materials characterized by the lattice-like arrangement of their atoms and molecules. Industry loves crystals, too. Electronics are based on a special family of crystals known as semiconductors, most famously silicon. To make semiconductors useful, engineers must tweak their crystalline lattice in subtle ways to start and stop the flow of electrons.

Delivering drugs to the right place

June 26, 2015 6:37 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

For the 12 million people worldwide who suffer from polycystic kidney disease (PKD), an inherited disorder with no known cure, a new treatment option may be on the horizon. PKD is a condition in which clusters of benign cysts develop within the kidneys. They vary in size, and as they accumulate more and more fluid, they can become very large. Among the common complications of PKD are high blood pressure and kidney failure.

A new means to killing harmful bacteria

June 25, 2015 11:50 am | by Helen Knight, MIT News correspondent | News | Comments

The global rise in antibiotic resistance is a growing threat to public health, damaging our ability to fight deadly infections such as tuberculosis. What’s more, efforts to develop new antibiotics are not keeping pace with this growth in microbial resistance, resulting in a pressing need for new approaches to tackle bacterial infection.

Pointing the way to crack-resistant metals

June 25, 2015 11:20 am | by Joe Kullman, Arizona State Univ. | News | Comments

Potential solutions to big problems continue to arise from research that is revealing how materials behave at the smallest scales. The results of a new study to understand the interactions of various metal alloys at the nanometer and atomic scales are likely to aid advances in methods of preventing the failure of systems critical to public and industrial infrastructure.

New conductive ink for electronic apparel

June 25, 2015 10:45 am | by Univ. of Tokyo | News | Comments

Univ. of Tokyo researchers have developed a new ink that can be printed on textiles in a single step to form highly conductive and stretchable connections. This new functional ink will enable electronic apparel such as sportswear and underwear incorporating sensing devices for measuring a range of biological indicators such as heart rate and muscle contraction.

Science Connect: Water Shortage, Reuse is a Social Problem

June 25, 2015 7:31 am | by Michelle Taylor, Editor-in-Chief, Laboratory Equipment and Jon Dipierro, Multimedia Production | Videos | Comments

In this one-minute video, hear from an expert in water sustainability regarding the economic and social challenges of water purification and reuse. Are these challenges holding back the potential of modern water technology?

Re-energizing antibiotics in the war against infections

June 24, 2015 5:00 pm | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | Videos | Comments

Antibiotics are the mainstay in the treatment of bacterial infections, and together with vaccines, have enabled the near eradication of infectious diseases in developed countries. However, the overuse of antibiotics has also led to an alarming rise in resistant bacteria that can outsmart antibiotics using different mechanisms. Some pathogenic bacteria are thus becoming almost untreatable.

Spintronics advance brings wafer-scale quantum devices closer to reality

June 24, 2015 4:00 pm | by Carla Reiter, Univ. of Chicago | News | Comments

An electronics technology that uses the "spin" of atomic nuclei to store and process information promises huge gains in performance over today's electron-based devices. But getting there is proving challenging. Now researchers at the Univ. of Chicago's Institute for Molecular Engineering have made a crucial step toward nuclear spintronic technologies.

Silica “spiky screws” could enhance industrial coatings, additive manufacturing

June 24, 2015 3:30 pm | by Heidi Hill, Oak Ridge National Laboratory | News | Comments

It took marine sponges millions of years to perfect their spike-like structures, but research mimicking these formations may soon alter how industrial coatings and 3-D printed to additively manufactured objects are produced. A new molecular paves the way for improved silica structure design by introducing microscopic, segmented screw-like spikes that can more effectively bond materials for commercial use.

Pinpointing the Onset of Metastasis

June 24, 2015 1:43 pm | by Lindsay Hock, Editor | Articles | Comments

Within the oncology community, a debate is raging about two controversial topics. The first is overdiagnosis. According to a recent report in The Wall Street Journal, some leading cancer experts say that zealous screening is finding ever-smaller abnormalities that are being labeled cancer or precancer with little or no justification.

New lenses grown layer-by-layer increase x-ray power

June 24, 2015 12:00 pm | by Justin Eure, Brookhaven National Laboratory | News | Comments

When you're working with the brightest x-ray light source in the world, it's crucial that you make use of as many of the photons produced as possible. That's why physicists at the National Synchrotron Light Source II (NSLS-II) are developing new lenses that focus x-ray beams to smaller spot sizes made up of more photons for better imaging resolution.

Eavesdropping on the body

June 24, 2015 11:00 am | by Tyler Irving, Univ. of Toronto | News | Comments

Biomedical engineers at the Univ. of Toronto have invented a new device that more quickly and accurately “listens in” on the chemical messages that tell our cells how to multiply. The tool improves our understanding of how cancerous growth begins, and could identify new targets for cancer medications.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading