Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Research on 3-D scaffolds sets new bar in lung regeneration

March 9, 2014 11:44 pm | by Jennifer Nachbur, Univ. of Vermont | News | Comments

In end-stage lung disease, transplantation is sometimes the only viable therapeutic option, but organ availability is limited and rejection presents an additional challenge. New methods and techniques in the field of tissue regeneration hold promise for this population, which includes an estimated 12.7 million people with chronic obstructive pulmonary disorder (COPD).

New hybrid material promising for solar fuels

March 9, 2014 11:42 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A new study by Berkeley Lab researchers shows that nearly 90% of the electrons generated by a hybrid material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules. Interfacing the semiconductor gallium phosphide with a cobaloxime catalyst provides an inexpensive photocathode for bionic leaves that produce energy-dense fuels from nothing more than sunlight, water and carbon dioxide.

Scientists create optical nanocavity to improve light absorption in semiconductors

March 7, 2014 1:14 pm | News | Comments

Experts from the Univ. of Buffalo (UB), helped by colleagues from two Chinese universities, have developed an optical "nanocavity" that could help increase the amount of light absorbed by ultrathin semiconductors. The advancement could lead to the creation of more powerful photovoltaic cells and improvements in video cameras and even hydrogen fuel, as the technology could aid the splitting of water using energy from light.

Advertisement

Scientists establish a new principle for future spin devices

March 7, 2014 1:04 pm | News | Comments

A new mechanism of controlling magnetic states by electric currents has been discovered by an international team of researchers who have exploited a quantum phenomenon to control magnetic states with electrical currents. The research hinges on a quantum geometrical phase, called the Berry phase, that exists in the momentum space of electronic band structures in specific materials.

LED lamps: Less energy, more light with gallium nitride

March 7, 2014 12:55 pm | News | Comments

Light-emitting diodes (LEDs) are durable and save energy. Now, researchers have found a way to make LED lamps even more compact while supplying more light than commercially available models. The key to this advance are a new type of transistors made of the semiconductor material gallium nitride.

Manufacturing a solution to planet-clogging plastics

March 7, 2014 9:06 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

Researchers at Harvard Univ.'s Wyss Institute have developed a method to carry out large-scale manufacturing of everyday objects using a fully degradable bioplastic isolated from shrimp shells. The objects exhibit many of the same properties as those created with synthetic plastics, but without the environmental threat. It also trumps most bioplastics on the market today in posing absolutely no threat to trees.

Crystals ripple in response to light

March 7, 2014 8:12 am | by Susan Brown, Univ. of California, San Diego | News | Comments

Light can trigger coordinated, wave-like motions of atoms in atom-thin layers of crystal, scientists have shown. The waves, called phonon polaritons, are far shorter than light waves and can be "tuned" to particular frequencies and amplitudes by varying the number of layers of crystal, they report.

Colored diamonds are a superconductor’s best friend

March 7, 2014 8:02 am | by Robert Sanders, UC Berkeley Media Relations | News | Comments

Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and even human tissue. A team of physicists have now shown that these diamond sensors can measure the tiny magnetic fields in high-temperature superconductors, providing a new tool to probe these much ballyhooed but poorly understood materials.

Advertisement

Squeezing light into metals

March 7, 2014 7:50 am | News | Comments

Using an inexpensive inkjet printer, Univ. of Utah electrical engineers produced microscopic structures that use light in metals to carry information. This new technique, which controls electrical conductivity within such microstructures, could be used to rapidly fabricate superfast components in electronic devices, make wireless technology faster or print magnetic materials.

Team discovers unexpected effect of heavy hydrogen in organic solar cells

March 6, 2014 10:55 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Photovoltaic spray paint could coat the windows and walls of the future if scientists are successful in developing low-cost, flexible solar cells based on organic polymers. Scientists at Oak Ridge National Laboratory recently discovered an unanticipated factor in the performance of polymer-based solar devices that gives new insight on how these materials form and function.

Shrinking gel steers tooth tissue formation

March 6, 2014 9:02 am | by Dan Ferber, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

A bit of pressure from a new shrinking, sponge-like gel is all it takes to turn transplanted unspecialized cells into cells that lay down minerals and begin to form teeth. The bioinspired gel material could one day help repair or replace damaged organs, such as teeth and bone, and possibly other organs as well.

Pumping iron: A hydrogel actuator with mussel tone

March 6, 2014 8:48 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Protein from a small, tasty mollusk inspired Michigan Technological Univ.’s Bruce P. Lee to invent a new type of hydrogel actuator. Hydrogels are soft networks of polymers with high water content, like jello. Because of their soft, gentle texture, they have the potential to interact safely with living tissues and have applications in a number of medical areas, including tissue engineering.

New catalyst could lead to cleaner energy

March 6, 2014 8:20 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemists have devised a way to trap carbon dioxide and transform it into useful organic compounds, using a simple metal complex. More work is needed to understand and optimize the reaction, but one day this approach could offer an easy and inexpensive way to recapture some of the carbon dioxide emitted by vehicles and power plants.

Advertisement

Programmable material: Sheet metal that never rattles

March 5, 2014 4:52 pm | News | Comments

Researchers from Empa and ETH Zurich have succeeded in producing a prototype of a vibration-damping material that could change the world of mechanics. The material of the future is not only able to damp vibrations completely; it can also specifically conduct certain frequencies further.

Researchers develop intrinsically unstacked double-layer graphene

March 4, 2014 3:35 pm | News | Comments

The huge surface area and strong interactions between graphene layers causes facile “stacking” behavior that dramatically reduces available surface area, inhibiting graphene electronic properties. Researchers have tried to prevent this with carbon black, but this also carries undesirable property changes. By introducing protuberances on graphene during synthesis, researchers in China have found a solution to the stacking problem.

Beckman Coulter partners with Wyatt on particle characterization

March 4, 2014 3:02 pm | News | Comments

Beckman Coulter Life Sciences has announced an agreement with Wyatt Technology Corp. to enable collaboration on products, applications and technical development. The partnership brings together Wyatt’s expertise in protein characterization, light scattering and biophysics with Beckman Coulter’s expertise in particle counting, particle characterization and cell viability measurement.

Physics in 3-D? That's nothing. Try 0-D

March 4, 2014 10:43 am | by Tom Robinette, Univ. of Cincinnati | News | Comments

In physics, there's small, and then there's nullity, as in zero-dimensional. Univ. of Cincinnati researchers have reached this threshold with a special structure, zero-dimensional quantum dots, that may someday lead to better ways of harnessing solar energy, stronger lasers or more sensitive medical diagnostic devices.

Recent advances mean wider use of flexible metallic glass is coming

March 4, 2014 10:35 am | News | Comments

Scientists at Los Alamos National Laboratory are working toward even stronger and more elastic glass types which would fail in a ductile fashion instead of shattering. Researchers there are looking at the initiation of shear-banding events in order to better understand how to control the mechanical properties of these materials.

Researchers identify key intermediate steps in artificial photosynthesis reaction

March 3, 2014 2:42 pm | by Lyn Yarris, Berkeley Lab | News | Comments

A key to realizing commercial-scale artificial photosynthesis technology is the development of electrocatalysts that can efficiently and economically carry out water oxidation reaction that is critical to the process. Heinz Frei, a chemist Lawrence Berkeley National Laboratory, has been at the forefront of this research effort. His latest results represent an important step forward.

Relativity shakes a magnet

March 3, 2014 1:37 pm | News | Comments

Current technologies for writing, storing, and reading information are either charge-based or spin-based. The downside is that weak perturbations such as impurities or radiation can lead to uncontrolled charge redistributions and, as a consequence, to data loss. Researchers in Europe have predicted and discovered a new physical phenomenon that allows them to manipulate the state of a magnet by electric signals and eliminate this loss.

Professor invents magnet for fast and cheap data storage

March 3, 2014 12:20 pm | News | Comments

According to recent findings by an international team of computer engineers, optical data storage does not require expensive magnetic materials because synthetic alternatives work just as well. The team’s discovery that synthetic ferrimagnets can be switched optically brings a much cheaper method for storing data using light a step closer.

Ultra-fast laser spectroscopy lights way to understanding new materials

March 3, 2014 11:54 am | News | Comments

Scientists at Ames Laboratory are revealing the mysteries of new materials using ultra-fast laser spectroscopy. Researchers recently used ultra-fast laser spectroscopy to examine and explain the mysterious electronic properties of iron-based superconductors. Seeing these dynamics is one emerging strategy to better understanding how these new materials work.

Physicists solve 20-year-old debate surrounding glassy surfaces

February 28, 2014 4:20 pm | News | Comments

U.K. scientists have succeeded in measuring how the surfaces of glassy materials flow like a liquid, even when they should be solid. A series of simple and elegant experiments were the solution to a problem that has been plaguing condensed matter physicists for the past 20 years. The finding has implications for thin-film coating designs.

Quirky photons spin out of the Standard Model

February 28, 2014 3:54 pm | News | Comments

Scientists in Switzerland have analyzed data collected at CERN’s Large Hadron Collider that offer a first-time observation of the polarization of the photon emitted in the weak decay of a bottom quark. This finding opens the way to future measurements, which may reveal a reality deeper than the one described by the present theory of elementary particles, the so-called Standard Model.

Researchers create coating material to prevent blood clots associated with implants

February 28, 2014 10:42 am | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

A team of researchers has developed a material that could help prevent blood clots associated with catheters, heart valves, vascular grafts and other implanted biomedical devices. Blood clots at or near implanted devices are thought to occur when the flow of nitric oxide, a naturally occurring clot-preventing agent generated in the blood vessels, is cut off. When this occurs, the devices can fail.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading