Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

2014 R&D 100 Award Winners

July 11, 2014 7:30 am | Award Winners

Introducing R&D Magazine's 2014 R&D 100 Award winners. The 2014 R&D 100 Award Winners are listed below in alphabetical order by the name of the primary developer company.

New technology offers precise control of molecular self-assembly

July 10, 2014 5:09 pm | News | Comments

A research group based in Japan has developed a new methodology that can easily and precisely control the timing, structure, and functions in the self-assembly of pi-conjugated molecules, which are an important enabling building block in the field of organic electronics. One of the key steps is keeping these molecules in a liquid form at room temperature.

Silicon oxide memories catch manufacturers’ eye

July 10, 2014 5:06 pm | by Jade Boyd, Rice Univ. | News | Comments

First developed five years ago at Rice Univ., silicon oxide memories are a type of two-terminal, “resistive random-access memory” (RRAM) technology that beats flash memory’s data density by a factor of 50. At Rice, the laboratory of chemist and 2013 R&D Magazine Scientist of the Year James Tour has recently developed a new version of RRAM that Tour believes outperforms more than a dozen competing versions.

Advertisement

“Nanopixels” promise thin, flexible high-res displays

July 10, 2014 9:35 am | News | Comments

A team in the U.K. has found that by sandwiching a 7-nm thick layer of a phase change material between two layers of a transparent electrode they could use a tiny current to “draw” images within the sandwich “stack”. The discovery could make it possible to create pixels just a few hundred nanometers across and pave the way for extremely high-resolution and low-energy thin, flexible displays.

Technology illuminates colder objects in deep space

July 10, 2014 7:42 am | News | Comments

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern Univ. team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space. The new technology uses a type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb).

Even geckos can lose their grip

July 9, 2014 2:17 pm | News | Comments

Geckos and spiders seem to be able to sit still forever upside down. But sooner or later the grip is lost, no matter how little force is acting on it. Engineers, using scanning electron microscopy, have recently demonstrated why this is so by showing how heat, and the subsequent movement of molecules at the nanoscale, eventually force loss of adhesion.

Highway for ultracold atoms in light crystals

July 9, 2014 2:10 pm | News | Comments

When a superconductor is exposed to a magnetic field, a surface current creates a magnetic field that cancels the field inside the superconductor. This phenomenon, known as the Meissner-Ochsenfeld effect, was first observed in 1933. In a research first, scientists have succeeded in measuring an analogue of the Meissner effect in an optical crystal with ultracold atoms. This validates theoretical predictions dating back more than 20 years.

Chemists develop novel catalyst with two functions

July 9, 2014 8:47 am | by Dr. Julia Weiler, Ruhr Univ. Bochum | News | Comments

A new type of catalyst, based on carbon, can facilitate two opposite reactions: electrolysis of water and combustion of hydrogen with oxygen. This bi-functionality, developed by researchers in Germany, is made possible from its construction: manganese-oxide or cobalt-oxide nanoparticles which are embedded in specially modified carbon, then integrated with nitrogen atoms in specific positions.

Advertisement

Using sand to improve battery performance

July 8, 2014 7:43 pm | by Sean Nealon, Univ. of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have used a quartz-rich material to fabricate a lithium-ion battery that outperforms the current industry standard by three times. This key material? Sand. Through a heating process with salt and magnesium, the scientists created a porous nano-silicon sponge that greatly increases active surface area.  

Highly reactive gold carbene complex shines in emerald green

July 8, 2014 1:09 pm | News | Comments

With a chemical “trick”, scientists in Germany have succeeded in isolating a stable gold carbene complex. Experts have been proposing gold carbenes as essential short-lived intermediates in catalytic reactions, but they elude study because of their high reactivity. Chemist Prof. Dr. Bernd F. Straub and his team are the first to have created the basis for directly examining the otherwise unstable gold-carbon double bond.

New research shows that friction and fracture are interrelated

July 8, 2014 12:51 pm | News | Comments

Overturning conventional wisdom stretching all the way to Leonardo da Vinci, new research from Israel shows that how things break and how things slide are closely interrelated. The breakthrough study marks an important advance in understanding friction and fracture, with implications for describing the mechanics that drive earthquakes.

Silicon sponge improves lithium-ion battery performance

July 8, 2014 10:20 am | News | Comments

Researchers at Pacific Northwest National Laboratory have developed a porous material to replace the graphite traditionally used in a battery's electrodes. Made from silicon, which has more than 10 times the energy storage capacity of graphite, the sponge-like material can help lithium-ion batteries store more energy and run longer on a single charge.

Nanoscale cooling element works in electrical insulators as well

July 8, 2014 8:45 am | News | Comments

An international research collaboration has designed a miniscule cooling element that uses spin waves to transport heat in electrical insulators. Although physicists have used spin for cooling purposes before, this is the first time that they have successfully done this in insulating materials. The cooling element could be used to dissipate heat in the increasingly smaller electrical components of computer chips.

Advertisement

Consider the “anticrystal”

July 7, 2014 3:12 pm | News | Comments

For the last century, the concept of crystals has been a mainstay of solid-state physics. Crystals are paragons of order; crystalline materials are defined by the repeating patterns their constituent atoms and molecules make. Now physicists have evidence that a new concept should undergird our understanding of most materials: the anticrystal, a theoretical solid that is completely disordered.

The new atomic age: Building smaller, greener electronics

July 7, 2014 3:06 pm | by Bryan Alary, Univ. of Alberta | News | Comments

Robert Wolkow and his team at the Univ. of Alberta are working to engineer atomically precise computing technologies that have practical, real-world applications. In recent research, he and his team observed for the first time how an electrical current flows across the skin of a silicon crystal and also measured electrical resistance as the current moved over a single atomic step.

Ironing out details of the carbon cycle

July 7, 2014 10:02 am | by Steven Powell, Univ. of South Carolina | News | Comments

Iron is present in tiny concentrations in seawater, on the order of a few billionths of a gram in a liter. However, its availability in seawater can have a profound effect on phytoplankton growth and, consequently, the Earth's carbon cycle. In recent research, an assessment was made of the various sources of dissolved iron in the north Atlantic Ocean and surprising discoveries were made about their origins.

With "ribbons" of graphene, width matters

July 7, 2014 9:39 am | by Laura L. Hunt, UW-Milwaukee | News | Comments

Using graphene ribbons just several atoms across, a group of researchers at the Univ. of Wisconsin-Milwaukee has found a novel way to “tune” the material, causing the extremely efficient conductor of electricity to act as a semiconductor. By imaging the ribbons with scanning-tunneling microscopy, researchers have confirmed how narrow the ribbon width must be. Achieving less than 10 nm in width is a big challenge.

“Nanojuice” could improve how doctors examine the gut

July 7, 2014 8:05 am | by Cory Nealon, Univ. at Buffalo | News | Comments

Located deep in the human gut, the small intestine is not easy to examine: X-rays, MRIs and ultrasound images each suffer limitations. Univ. at Buffalo researchers are developing a new imaging technique involving nanoparticles suspended in liquid to form “nanojuice” that patients would drink. Upon reaching the small intestine, doctors would strike the nanoparticles with laser light, providing a non-invasive, real-time view of the organ.

New nonlinear metamaterial is a million times better than traditional options

July 2, 2014 3:48 pm | News | Comments

Nonlinear optical materials are widely used in laser systems, but they require high light intensity and long propagation to be effective. A team in Germany and Texas has designed a new 400-nm thick nonlinear mirror that delivers frequency-doubled output using input light intensity as small as that of a laser pointer. Compared to traditional nonlinear materials, the new option offers a million times increase in nonlinear optical response.

Japanese gold leaf artists worked on the nanoscale

July 2, 2014 3:10 pm | News | Comments

Ancient Japanese gold leaf artists were truly masters of their craft. An analysis of six of these Japanese paper screens show that these artifacts are gilded with gold leaf that was hand-beaten to the nanometer scale. The study was able to prove this without any damage to the screens through the use of x-ray fluorescence spectroscopy.

Toward a new way to keep electronics from overheating

July 2, 2014 1:05 pm | News | Comments

Using something called a microchannel heat sink to simulate the warm environment of a working computer, researchers in Malaysia have analyzed three nanofluids for the traits that are important in an effective coolant. The results of their study show that the nanofluids, which are made of metallic nanoparticles that have been added to a liquid, such as water, all performed better than water as coolants, with one mixture standing out.

Nature of solids and liquids explored through new pitch drop experiment

July 2, 2014 12:47 pm | News | Comments

Known as the “world's longest experiment”, an experiment at the University of Queensland in Australia was famous for taking ten years for a drop of pitch, a black, sticky material, to fall from a funnel. A new test in the U.K. is using a different bitumen, or pitch, which is 30 times less viscous than the Queensland experiment, so that the flow can be seen at a faster rate and hopefully provide more insights.

New NIST metamaterial gives light a one-way ticket

July 2, 2014 11:58 am | News | Comments

The light-warping structures known as metamaterials have a new trick in their ever-expanding repertoire. Researchers at NIST have built a silver, glass and chromium nanostructure that can all but stop visible light cold in one direction while giving it a pass in the other. The device could someday play a role in optical information processing and in novel biosensing devices.

Inspired by nature, researchers create tougher metal materials

July 2, 2014 11:56 am | News | Comments

Materials science experts in North Carolina and China collaborated on work that drew inspiration from the structure of bones and bamboo. The team has found that by gradually changing the internal structure of metals, stronger, tougher materials can be created and customized for a wide variety of applications, from body armor to automobile parts. The gradient structure concept works on numerous metals, including stainless steel and nickel.

Scientists discover how plastic solar panels work

July 1, 2014 11:52 am | News | Comments

Experts don't fully understand how “plastic” solar panels work, which complicates the improvement of their cost efficiency and hinders wider use of the technology. However, an international team has now determined how light beams excite the chemicals in solar panels, enabling them to produce charge. Their findings were made possible with the use of femtosecond Raman spectroscopy.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading