Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Graphene shows potential as anticancer therapeutic strategy

February 25, 2015 8:11 am | by Jamie Brown, Univ. of Manchester | News | Comments

Univ. of Manchester scientists have used graphene to target and neutralize cancer stem cells while not harming other cells. This new development opens up the possibility of preventing or treating a broad range of cancers, using a non-toxic material.

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution

February 24, 2015 11:19 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Newly developed tiny antennas, likened to spotlights on the nanoscale, offer the potential to measure food safety, identify pollutants in the air and even quickly diagnose and treat cancer. The new antennas are cubic in shape. They do a better job than previous spherical ones at directing an ultra-narrow beam of light where it is needed, with little or no loss due to heating and scattering.

Ultra-thin nanowires can trap electron “twisters”

February 24, 2015 11:11 am | by Phil Sneiderman, Johns Hopkins Univ. | News | Comments

Superconductor materials are prized for their ability to carry an electric current without resistance, but this valuable trait can be crippled or lost when electrons swirl into tiny tornado-like formations called vortices. These disruptive mini-twisters often form in the presence of magnetic fields, such as those produced by electric motors.

Advertisement

Building tailor-made DNA nanotubes step-by-step

February 24, 2015 8:10 am | by McGill Univ. | News | Comments

Researchers at McGill Univ. have developed a new, low-cost method to build DNA nanotubes block-by-block, a breakthrough that could help pave the way for scaffolds made from DNA strands to be used in applications such as optical and electronic devices or smart drug delivery systems. Many researchers, including the McGill team, have previously constructed nanotubes using a method that relies on spontaneous assembly of DNA in solution.

Simulating superconducting materials with ultracold atoms

February 23, 2015 11:46 am | by Jade Boyd, Rice Univ. | News | Comments

Using ultracold atoms as a stand-in for electrons, a Rice Univ.-based team of physicists has simulated superconducting materials and made headway on a problem that's vexed physicists for nearly three decades. The research was carried out by an international team of experimental and theoretical physicists and appears online in Nature. The work could open up a new realm of unexplored science.

Researchers identify keys to improved polymer solar cells

February 23, 2015 8:38 am | by Bill Kisliuk, Univ. of California, Los Angeles | News | Comments

Paving the way for lighter and more flexible solar devices, Univ. of California, Los Angeles researchers have identified the key principles for developing high-efficiency polymer solar cells. Today’s commercially produced solar panels use silicon cells to efficiently convert sunlight to energy. But silicon panels are too heavy to be used for energy-producing coatings for buildings and cars, or flexible and portable power supplies.

New catalyst to create chemical building blocks from biomass

February 23, 2015 7:36 am | by Univ. of Tokyo | News | Comments

Univ. of Tokyo researchers have developed a novel selective catalyst that allows the creation of several basic chemicals from biomass instead of petroleum. This discovery may lead to the use of plant biomass as a basic feedstock for the chemical industry. The new catalyst enables selective cleaving (hydrogenolysis) of carbon-oxygen (C-O) single bonds in phenols and aryl methyl ethers, two of the main components of lignin.

Semiconductor works better when hitched to graphene

February 20, 2015 8:41 am | by SLAC Office of Communications | News | Comments

Graphene shows great promise for future electronics, advanced solar cells, protective coatings and other uses, and combining it with other materials could extend its range even further. Experiments at the SLAC National Accelerator Laboratory looked at the properties of materials that combine graphene with a common type of semiconducting polymer.

Advertisement

Fibers made by transforming materials

February 20, 2015 8:26 am | by David L. Chandler, MIT News Office | News | Comments

Scientists have known how to draw thin fibers from bulk materials for decades. But a new approach to that old method, developed by researchers at Massachusetts Institute of Technology, could lead to a whole new way of making high-quality fiber-based electronic devices. The idea grew out of a long-term research effort to develop multifunctional fibers that incorporate different materials into a single long functional strand.

New technique developed for making graphene competitor, molybdenum disulphide

February 20, 2015 7:59 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Graphene is often touted as a replacement for silicon in electronic devices due to its extremely high conductivity and unbeatable thinness. But graphene isn’t the only 2-D material that could play such a role. Univ. of Pennsylvania researchers have made an advance in manufacturing one such material, molybdenum disulphide.

Perfect colors, captured with ultra-thin lens

February 20, 2015 7:50 am | by Caroline Perry, Harvard Univ. | News | Comments

Most lenses are, by definition, curved. After all, they are named for their resemblance to lentils, and a glass lens made flat is just a window with no special powers. But a new type of lens created at the Harvard School of Engineering and Applied Sciences turns conventional optics on its head.

Semiconductor Moves Spintronics Toward Reality

February 19, 2015 2:00 pm | by Univ. of Michigan | News | Comments

A new semiconductor compound is bringing fresh momentum to the field of spintronics, an emerging breed of computing device that may lead to smaller, faster, less power-hungry electronics. Created from a unique low-symmetry crystal structure, the compound is the first to build spintronic properties into a material that's stable at room temperature and easily tailored to a variety of applications.

Shape-shifting groups of nanorods release heat differently

February 19, 2015 9:11 am | by Justin H.S. Breaux, Argonne National Laboratory | News | Comments

Researchers have revealed previously unobserved behaviors that show how details of the transfer of heat at the nanoscale cause nanoparticles to change shape in ensembles.

Advertisement

Researchers develop a cost-effective, efficient rival for platinum

February 18, 2015 10:39 am | by Aalto Univ. | News | Comments

Researchers succeeded in creating an electrocatalyst that is needed for storing electric energy made of carbon and iron. A challenge that comes with the increased use of renewable energy is how to store electric energy. Platinum has traditionally been used as the electrocatalyst in electrolyzers that store electric energy as chemical compounds.

Paper-like material could boost electric vehicle batteries

February 18, 2015 8:58 am | by Sean Nealon, University of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have developed a novel paper-like material for lithium-ion batteries. It has the potential to boost by several times the specific energy, or amount of energy that can be delivered per unit weight of the battery. This paper-like material is composed of sponge-like silicon nanofibers more than 100 times thinner than human hair.

Novel crumpling method takes flat graphene from 2-D to 3-D

February 18, 2015 7:54 am | by Rick Kubetz, Univ. of Illinois, Urbana-Champaign | News | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have developed a unique single-step process to achieve 3-D texturing of graphene and graphite. Using a commercially available thermally activated shape-memory polymer substrate, this 3-D texturing, or "crumpling," allows for increased surface area and opens the doors to expanded capabilities for electronics and biomaterials.

New spin on spintronics

February 17, 2015 11:18 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

A team of researchers from the Univ. of Michigan and Western Michigan Univ. is exploring new materials that could yield higher computational speeds and lower power consumption, even in harsh environments. Most modern electronic circuitry relies on controlling electronic charge within a circuit, but this control can easily be disrupted in the presence of radiation, interrupting information processing.

Novel solid-state nanomaterial platform enables terahertz photonics

February 17, 2015 11:11 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Compact, sensitive and fast nanodetectors are considered to be somewhat of a "Holy Grail" sought by many researchers around the world. And now a team of scientists in Italy and France has been inspired by nanomaterials and has created a novel solid-state technology platform that opens the door to the use of terahertz photonics in a wide range of applications.

The future of electronics could lie in material from the past

February 17, 2015 8:31 am | by Pam Frost Gorder, The Ohio State Univ. | News | Comments

The future of electronics could lie in a material from its past, as researchers from The Ohio State Univ. work to turn germanium, the material of 1940s transistors, into a potential replacement for silicon. At the American Association for the Advancement of Science meeting, Asst. Prof. of Chemistry Joshua Goldberger reported progress in developing a form of germanium called germanane.

Researchers synthesize material for efficient plasmonic devices in mid-infrared range

February 17, 2015 8:14 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team led by North Carolina State Univ. has identified and synthesized a material that can be used to create efficient plasmonic devices that respond to light in the mid-infrared (IR) range. This is the first time anyone has demonstrated a material that performs efficiently in response to this light range, and it has applications in fields ranging from high-speed computers, to solar energy to biomedical devices.

UV light sensor for improved fire detection

February 17, 2015 8:02 am | by Amy Sutton, Univ. of Surrey | News | Comments

Researchers at the Univ. of Surrey’s Advanced Technology Institute manipulated zinc oxide, producing nanowires from this readily available material to create an ultraviolet (UV) light detector that is 10,000 times more sensitive to UV light than a traditional zinc oxide detector. Currently, photoelectric smoke sensors detect larger smoke particles found in dense smoke, but are not as sensitive to small particles of smoke.

New self-stretching material developed

February 13, 2015 2:23 pm | by Peter Iglinski, Univ. of Rochester | News | Comments

Although most materials slightly expand when heated, there is a new class of rubber-like material that not only self-stretches upon cooling; it reverts back to its original shape when heated, all without physical manipulation. The material is like a shape-memory polymer because it can be switched between two different shapes.

How iron feels the heat

February 13, 2015 1:34 pm | by Jessica Stoller-Conrad, Caltech | News | Comments

As you heat up a piece of iron, the arrangement of the iron atoms changes several times before melting. This unusual behavior is one reason why steel, in which iron plays a starring role, is so sturdy and ubiquitous in everything from teapots to skyscrapers. But the details of just how and why iron takes on so many different forms have remained a mystery.

Better catalysts, made-to-order

February 13, 2015 11:03 am | by Joe Rojas-Burke, Univ. of Utah | News | Comments

Most of our medicine, plastics and synthetic fibers wouldn't exist without catalysts. And yet chemists don't fully understand how most catalysts work, and developing new catalysts often still depends on laborious trial-and-error. But in a new study, chemists captured enough data on the crucial steps in a reaction to accurately predict the structures of the most efficient catalysts.

Silver-glass sandwich structure acts as inexpensive color filter

February 13, 2015 10:37 am | by Amanda Morris, Northwestern Univ. | News | Comments

The engineering world just became even more colorful. Northwestern Univ. researchers have created a new technique that can transform silver into any color of the rainbow. Their simple method is a fast, low-cost alternative to color filters currently used in electronic displays and monitors.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading