Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

A stretchable highway for light

February 20, 2014 2:53 am | News | Comments

A team of Belgian researchers have made what may be the first optical circuit that uses interconnections that are not only bendable, but also stretchable. These new interconnections, made of a rubbery transparent material called PDMS, guide light along their path even when stretched up to 30% and when bent around an object the diameter of a human finger.

Silicon-germanium chip sets new speed record

February 19, 2014 2:42 pm | by Rick Robinson, Georgia Institute of Technology | News | Comments

A research collaboration consisting of IHP-Innovations for High Performance Microelectronics in Germany and the Georgia Institute of Technology has demonstrated the world's fastest silicon-based device to date. The investigators operated a silicon-germanium (SiGe) transistor at 798 GHz fMAX, exceeding the previous speed record for silicon-germanium chips by about 200 GHz.

Controlling magnetism with an electric field

February 19, 2014 8:16 am | by Marie Guma-Diaz and Annette Gallagher UM News | News | Comments

There is a big effort in industry to produce electrical devices with more and faster memory and logic. Magnetic memory elements, such as in a hard drive, and in the future in what is called MRAM (magnetic random access memory), use electrical currents to encode information. However, the heat which is generated is a significant problem, since it limits the density of devices and hence the performance of computer chips.

Advertisement

Under Armour stumbles in Olympic sponsorship

February 18, 2014 5:08 pm | by Mae Anderson - AP Business Writer - Associated Press | News | Comments

The 2014 Sochi Olympics were expected to be a triumphant moment for the U.S. speedskating team—and the squad's sponsor, Under Armour. It's been anything but that. After a strong showing on the World Cup circuit, the team headed to the Games in skinsuits that Under Armour developed and called the fastest speedskating suits in the world.

Researchers develop sticky nanoparticles to fight heart disease

February 18, 2014 10:51 am | News | Comments

Clemson Univ. researchers have developed nanoparticles that can deliver drugs targeting damaged arteries, a non-invasive method to fight heart disease. Heart disease is the leading cause of death in the U.S., according to the Centers for Disease Control and Prevention. One of the standard ways to treat clogged and damaged arteries currently is to implant vascular stents, which hold the vessels open and release such drugs as paclitaxel.

Pomegranate-inspired design solves problems for lithium-ion batteries

February 18, 2014 8:46 am | News | Comments

An electrode designed like a pomegranate—with silicon nanoparticles clustered like seeds in a tough carbon rind—overcomes several remaining obstacles to using silicon for a new generation of lithium-ion batteries, say its inventors at Stanford Univ. and the SLAC National Accelerator Laboratory.

Caps not the culprit in nanotube chirality

February 18, 2014 8:14 am | News | Comments

A single-walled carbon nanotube grows from the round cap down, so it’s logical to think the cap’s formation determines what follows. But according to researchers at Rice Univ., that’s not entirely so. Theoretical physicist Boris Yakobson and his Rice colleagues found through exhaustive analysis that those who wish to control the chirality of nanotubes would be wise to look at other aspects of their growth.

Rice’s carbon nanotube fibers outperform copper

February 14, 2014 7:22 am | Videos | Comments

On a pound-per-pound basis, carbon nanotube-based fibers invented at Rice Univ. have greater capacity to carry electrical current than copper cables of the same mass, according to new research. While individual nanotubes are capable of transmitting nearly 1,000 times more current than copper, the same tubes coalesced into a fiber using other technologies fail long before reaching that capacity.

Advertisement

Scientists find new path to loss-free electricity

February 13, 2014 2:06 pm | News | Comments

Superconductor “recipes” are frequently tweaked by swapping out elements or manipulating the valence electrons to strike the perfect conductive balance. Most high-temperature superconductors feature only one orbital impacting performance. But what about introducing more complex configurations? Now, Brookhaven National Laboratory’s physicists have combined atoms with multiple orbitals and precisely pinned down their electron distributions.

Possible explanation for light-degradation silicon solar cells

February 13, 2014 10:19 am | by Ralf Butscher, Helmholtz Center | News | Comments

An undesired effect in thin film amorphous silicon solar cells has puzzled the scientific community for the last 40 years. This effect, known as light-induced degradation, is responsible for reducing solar cell efficiency over time. Researchers in Germany have recently demonstrated that tiny voids within the silicon network are partly responsible for 10 to 15% efficiency loss as soon as they are used.

Researchers develop first single-molecule LED

February 13, 2014 9:42 am | News | Comments

A team in France has greatly miniaturized the light-emitting diode (LED) by creating one from a single polythiophene wire placed between the tip of a scanning tunneling microscope and a gold surface. This nanowire, which is made of the same hydrogen, carbon and sulfur components found in much larger LEDs, emits light only when the current passes in a certain direction.

Stirring-up atomtronics in a quantum circuit

February 12, 2014 5:02 pm | by E. Edwards, JQI | News | Comments

Modern electronics relies on utilizing the charge properties of the electron. The emerging field of atomtronics, however, uses ensembles of atoms to build analogs to electronic circuit elements. Physicists have built a superfluid atomtronic circuit that have allowed them to demonstrate a tool that is critical to electronics: hysteresis. It is the first time that hysteresis has been observed in an ultracold atomic gas.

Solving an evolutionary puzzle

February 12, 2014 4:58 pm | News | Comments

For four decades, polychlorinated biphenyls (PCBs) and heavy metals from nearby manufacturing plants flowed into New Bedford Harbor, creating one of the EPA’s largest Superfund cleanup sites. It’s also the site of an evolutionary puzzle: small Atlantic killifish are not only tolerating the toxic conditions in the harbor, they seem to be thriving there. In a new paper, researchers may have an explanation for their genetic resistance to PCBs.

Advertisement

Andor Technology joins Oxford Instruments to drive growth

February 12, 2014 8:57 am | News | Comments

Oxford Instruments, a leading provider of high-technology tools for industry and research has recently acquired Andor. A supplier of high-performance cameras, microscope systems and software for the physical science and life science industries, Andor will continue to focus on growing its existing core markets and will spearhead Oxford Instruments strategic expansion into the nanobiotechnology arena.

Physicists reveal novel magnetoelectric effect

February 12, 2014 8:53 am | by Chris Branam, Univ. of Arkansas | News | Comments

New research at the Univ. of Arkansas reveals a novel magnetoelectric effect that makes it possible to control magnetism with an electric field. The novel mechanism may provide a new route for using multiferroic materials for the application of RAM (random access memories) in computers and other devices, such as printers.

New technology reconstructs smallest features of human fingerprints

February 12, 2014 8:42 am | News | Comments

An international partnerships is aiming to develop robust fingerprint sensors with resolution beyond today’s 500 dpi international standards, the minimum required by the U.S. Federal Bureau of Investigation. The new platform uses vertical piezoelectric nanowire matrices designed using multiphysics modeling software.

How to make the wonder material graphene superconducting

February 11, 2014 1:42 pm | News | Comments

An international team has recently unveiled a superconducting pairing mechanism in calcium-doped graphene. The pairing, which was using a angle-resolved photoemission spectroscopy method, is important because graphene is easily doped or functionalized with chemicals, allowing scientists to more fully explore the nature of superconductivity.

Fine-tuning a rainbow of colors at the nanoscale

February 11, 2014 1:34 pm | News | Comments

Engineers are increasingly turning to plasmonic color filters (PCFs) to create and control a broad spectrum of colors for imaging applications. However, PCF light transmission efficiency has been limited to only about 30%, less than half the rate of conventional filters. Researchers have now developed a new PCF scheme that achieves a transmission efficiency of 60 to 70%.

Sometimes the average just isn’t good enough

February 11, 2014 8:35 am | News | Comments

Computational biologists in Austria have recently shown that the common practice of averaging is not always a good thing when it comes to analyzing protein crystal structures. A study shows that protein structures could be more dynamic and heterogeneous than current methods of x-ray analysis suggest.

Study suggests ways to improve common furniture fire test

February 11, 2014 8:19 am | News | Comments

NIST and American Univ. researchers report in a new study that the bench-scale test widely used to evaluate whether a burning cigarette will ignite upholstered furniture may underestimate the tendency of component materials to smolder when these materials are used in sofas and chairs supported by springs or cloth. The study comes as regulations and methods for evaluating ignition in furniture are undergoing scrutiny.

Better RNA interference, inspired by nature

February 11, 2014 7:54 am | by Anne Trafton, MIT News Office | News | Comments

Inspired by tiny particles that carry cholesterol through the body, Massachusetts Institute of Technology chemical engineers have designed nanoparticles that can deliver snippets of genetic material that turn off disease-causing genes. This approach, known as RNA interference, holds great promise for treating cancer and other diseases. However, delivering enough RNA to treat the diseased tissue has proven difficult.

Researchers make breakthrough in battery technology

February 10, 2014 1:09 pm | News | Comments

Materials experts in Ireland have developed a new germanium nanowire-based anode that has the ability to greatly increase the capacity and lifetimes of lithium-ion batteries. The typical lithium-ion battery on the market today is based on graphite, which has a relatively low capacity for energy storage. Restructuring the germanium replacement material into nanowires produces a stable, porous battery material.

Fire ants inspire new process for storing and dissipating energy

February 7, 2014 10:49 am | News | Comments

U.S. Army-sponsored researchers have discovered a process for simultaneously storing and dissipating energy within structures that could lead to design rules for new types of active, reconfigurable materials. The study method was derived from an examination of how a species of South American fire ant collectively entangle themselves to form an active structure capable of changing state from a liquid to a solid when subject to applied loads.

3-D-stacked hybrid SRAM cell to be built by European scientists

February 7, 2014 9:49 am | News | Comments

European scientists from both academia and industry have begun an ambitious new research project focused on an alternative approach to extend Moore's Law. The research project, coordinated IBM Research in Zurich and called COMPOSE³, is based on the use of new materials to replace today's silicon, and on taking an innovative design approach where transistors are stacked vertically, known as 3-D stacking.

Theorists predict new forms of exotic insulating materials

February 7, 2014 8:02 am | by David L. Chandler, MIT News Office | News | Comments

Topological insulators have been of great interest to physicists in recent years because of unusual properties that may provide insights into quantum physics. But most analysis of such materials has had to rely on highly simplified models. Now, a team of researchers at Massachusetts Institute of Technology has performed a more detailed analysis that hints at the existence of six new kinds of topological insulators.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading