Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Tiny laser sensor heightens bomb detection sensitivity

July 21, 2014 7:45 am | by Sarah Yang, Media Relations, UC Berkeley | News | Comments

New technology under development at the Univ. of California, Berkeley could soon give bomb-sniffing dogs some serious competition. A team of researchers has found a way to dramatically increase the sensitivity of a light-based plasmon sensor to detect incredibly minute concentrations of explosives.

Researchers create new method to draw molecules from live cells

July 18, 2014 12:30 pm | by Jeannie Kever, Univ. of Houston | News | Comments

Most current methods of identifying intracellular information result in the death of the individual cells, making it impossible to continue to gain information and assess change over time. Using magnetized carbon nanotubes, scientists in Texas have devised a new method for extracting molecules from live cells without disrupting cell development.

Mats made from shrimp chitin attract uranium like a magnet

July 18, 2014 11:16 am | News | Comments

A Univ. of Alabama start-up company, 525 Solutions, has received about $1.5 million from the federal government to refine an invention to extract uranium from the ocean for use as fuel. It is an adsorbent, biodegradable material made from the compound chitin, which is found in crustaceans and insects. The researchers have developed transparent sheets, or mats, comprised of tiny chitin fibers, which pull uranium from the water.

Advertisement

First ab initio method for characterizing hot carriers

July 18, 2014 8:19 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

One of the major road blocks to the design and development of new, more efficient solar cells may have been cleared. Researchers with the Lawrence Berkeley National Laboratory have developed the first ab initio method for characterizing the properties of “hot carriers” in semiconductors. Hot carriers are electrical charge carriers with significantly higher energy than charge carriers at thermal equilibrium.

Future electronics may depend on lasers, not quartz

July 18, 2014 8:09 am | by Jessica Stoller-Conrad, Caltech | News | Comments

Nearly all electronics require devices called oscillators that create precise frequencies. For nearly 100 years, these oscillators have relied upon quartz crystals to provide a frequency reference, much like a tuning fork is used as a reference to tune a piano. However, future high-end navigation systems, radar systems and even possibly tomorrow's consumer electronics will require references beyond the performance of quartz.

Nanocamera takes pictures at distances smaller than light’s wavelength

July 18, 2014 7:55 am | by Rick Kubetz, Engineering Communications Office | Videos | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have demonstrated that an array of novel gold, pillar-bowtie nanoantennas (pBNAs) can be used like traditional photographic film to record light for distances that are much smaller than the wavelength of light (for example, distances less than ~600 nm for red light). A standard optical microscope acts as a “nanocamera” whereas the pBNAs are the analogous film.

Toward ultimate light efficiency on the cheap

July 17, 2014 9:27 am | by Kate McAlpine, Univ. of Michigan | News | Comments

Researchers have taken a major stride toward perfectly efficient lighting that is also relatively inexpensive and simple to make. The same material can also reveal the presence of water by changing color. Incandescent bulbs only turn 5% of the electricity they use into light, while fluorescent LEDs can produce light from up to 25% of the electrons that pass through them. Phosphorescent LEDs can turn every electron into a ray of light.

Cell membrane proteins give up their secrets

July 17, 2014 8:03 am | Videos | Comments

Biological physicists at Rice Univ. have succeeded in analyzing transmembrane protein folding in the same way they study the proteins’ free-floating, globular cousins. They have applied energy landscape theory to proteins that are hard to view because they are inside cell membranes. The method should increase the technique’s value to researchers who study proteins implicated in diseases and possibly in the creation of drugs to treat them.

Advertisement

Water molecules favor negative charges

July 17, 2014 7:52 am | News | Comments

Recent research shows that, in the presence of charged substances, water molecules favor associating with elements with a negative electrical charge rather than a positive electric charge. A study on the subject that employed advanced optical spectroscopy techniques could provide new insights on the processes of cell formation.

Study: Squid skin protein could improve biomedical technologies

July 16, 2014 2:24 pm | News | Comments

The common pencil squid may hold the key to a new generation of medical technologies that could communicate more directly with the human body. Materials science researchers in California have discovered that reflectin, a protein in the tentacled creature’s skin, can conduct positive electrical charges, or protons, making it a promising material for building biologically inspired devices.  

Researchers develop simple procedure to obtain nanosized graphene

July 16, 2014 9:34 am | Videos | Comments

A team including scientists from Spain and from IBM Research in Switzerland have published work which describes an extremely simple method to obtain high quality nanographenes from easily available organic compounds. This method is based on the reactivity of a group of molecules named arynes, which can act as "molecular glue" to paste graphene fragments together.

Self-assembling nanoparticle could improve MRI cancer scanning

July 16, 2014 8:44 am | News | Comments

Scientists have designed a new self-assembling nanoparticle that targets tumors, to help doctors diagnose cancer earlier. The new nanoparticle, developed by researchers in the U.K., boosts the effectiveness of magnetic resonance imaging scanning by specifically seeking out receptors that are found in cancerous cells.

Powerful new sensor amplifies optical signature of single molecules by 100 billion times

July 15, 2014 5:19 pm | News | Comments

Scientists in Texas have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. The new imaging method uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

Advertisement

New York invests in nanotech with General Electric

July 15, 2014 4:17 pm | by David Klepper - Associated Press - Associated Press | News | Comments

New York state is teaming with General Electric Co. and other companies on a $500 million initiative to spur high-tech manufacturing of miniature electronics, Gov. Andrew Cuomo and GE CEO Jeffrey Immelt announced Tuesday. The state will invest $135 million for the collaborative program, which will be based out of the SUNY College of Nanoscale Science and Engineering in Albany.

Fundamental chemistry findings could help extend Moore’s Law

July 15, 2014 3:49 pm | by Kate Greene, Berkeley Lab | News | Comments

The doubling of transistors on a microprocessor occurs roughly every two years, and is the outcome of what is called Moore’s Law. In a bid to continue this trend of decreasing transistor size and increasing computation and energy efficiency, chip-maker Intel has partnered with Lawrence Berkeley National Laboratory to design an entirely new kind of photoresist, one that combines the best features of two existing types of resist.

Removing parts of shape-shifting protein explains how blood clots

July 15, 2014 1:54 pm | News | Comments

Prothrombin is an inactive precursor for thrombin, a key blood-clotting protein, and is essential for life because of its ability to coagulate blood. Using x-ray crystallography, researchers have published the first image of this important protein. By removing disordered sections of the protein’s structure, scientists have revealed its underlying molecular mechanism for the first time.

3-D nanostructure could benefit nanoelectronics, gas storage

July 15, 2014 10:57 am | by B.J. Almond, Rice Univ. | News | Comments

A 3-D porous nanostructure would have a balance of strength, toughness and ability to transfer heat that could benefit, nanoelectronics, gas storage and composite materials that perform multiple functions, according to engineers at Rice Univ. The researchers made this prediction by using computer simulations to create a series of 3-D prototypes with boron nitride, a chemical compound made of boron and nitrogen atoms.

Swiss cross made from just 20 single atoms

July 15, 2014 9:14 am | News | Comments

Together with teams from Finland and Japan, physicists from the Univ. of Basel in Switzerland were able to place 20 single bromine atoms on a fully insulated surface at room temperature to form the smallest “Swiss cross” ever created. The effort is a breakthrough because the fabrication of artificial structures on an insulator at room temperature is difficult. It is largest number of atomic manipulations ever achieved at room temperature.

Labs characterize carbon for batteries

July 15, 2014 8:04 am | by Mike Williams, Rice Univ. | News | Comments

Lithium-ion batteries could benefit from a theoretical model created at Rice Univ. and Lawrence Livermore National Laboratory that predicts how carbon components will perform as electrodes. The model is based on intrinsic electronic characteristics of materials used as battery anodes. These include the material’s quantum capacitance and the material’s absolute Fermi level.

Researchers discover boron “buckyball”

July 14, 2014 11:44 am | News | Comments

The discovery of buckyballs helped usher in the nanotechnology era. Now, researchers from Brown Univ. and colleagues from China have shown that boron, carbon’s neighbor on the periodic table, can form a cage-like molecule similar to the buckyball. Until now, such a boron structure had only been a theoretical speculation.

From stronger Kevlar to better biology

July 14, 2014 9:17 am | by Angela Herring, Northeastern Univ. | News | Comments

Mar­ilyn Minus, a materials expert and assis­tant pro­fessor at Northeastern Univ., is exploring directed self-assembly methods using carbon nanotubes and polymer solutions. So far, she’s used the approach to develop a polymer com­posite mate­rial that is stronger than Kevlar yet much lighter and less expen­sive. Minus is now expanding this work to incor­po­rate more polymer classes: flame retar­dant mate­rials and bio­log­ical molecules.

Chemists develop technology to produce clean-burning hydrogen fuel

July 14, 2014 9:12 am | News | Comments

Rutgers Univ. researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel. The new catalyst is based on carbon nanotubes and may rival cost-prohibitive platinum for reactions that split water into hydrogen and oxygen.

Phase-changing material could allow robots to switch between hard and soft states

July 14, 2014 7:35 am | by Helen Knight, MIT News correspondent | Videos | Comments

In the movie “Terminator 2,” the shape-shifting T-1000 robot morphs into a liquid state to squeeze through tight spaces or to repair itself when harmed. Now a phase-changing material built from wax and foam, and capable of switching between hard and soft states, could allow even low-cost robots to perform the same feat.

Oxygen extends graphene’s reach

July 11, 2014 1:05 pm | News | Comments

The addition of elements to the surface of graphene can modify the material’s physical and chemical properties, potentially extending the range of possible applications. Recently performed theoretical calculations at RIKEN in Japan show that the addition of oxygen to graphene on copper substrates results in enhanced functionalization. The resulting structure, known as an enolate, make support applications that require catalytic response.

Peeling back the layers of thin film structure and chemistry

July 11, 2014 12:33 pm | by Erika Gebel Berg, Argonne National Laboratory | News | Comments

Perovskites continue to entice materials scientists with their mix of conductivity, ferroelectricity, ferromagnetism, and catalytic activity. In recent years, scientists realized that they could vastly improve the properties of perovskites by assembling them into thin films, but nobody knew the reason why. But studying the chemistry layer-by-layer, experts working with x-ray beamline at Argonne National Laboratory are getting close.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading