Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Optimizing Graphene Characterization

June 4, 2014 12:41 pm | by Lishan Weng, Applications Engineer, Keithley Instruments Inc. | Articles | Comments

Before 2004, when Geim and Novoselov demonstrated the existence of graphene, a single-atomic-layer-thick crystal of carbon, physicists didn’t believe such a substance could exist. Since then, graphene has attracted tremendous research interest because of its exceptional physical and electrical properties.

Breakthrough greatly strengthens graphene-reinforced composites

June 4, 2014 10:07 am | News | Comments

Haydale, a U.K.-based developer of a unique plasma functionalization process for nanomaterials, has announced the publication of research showing its functionalized graphene nanoplatelets significantly improve the nanoscale reinforcement of resin. The report states a greater than two times increase in tensile strength and modulus of an epoxy composite using this technology.

Preserving bread longer: A new edible film made with essential oils

June 4, 2014 9:59 am | News | Comments

Essential oils have boomed in popularity as more people seek out alternatives to replace their synthetic cleaning products, anti-mosquito sprays and medicines. Now scientists are tapping them as candidates to preserve food in a more consumer-friendly way. Recent research has led to new edible films containing oils from clove and oregano that preserve bread longer than commercial additives.

Advertisement

Rice produces carbon-capture breakthrough

June 4, 2014 7:47 am | Videos | Comments

Rice Univ. scientists have created an Earth-friendly way to separate carbon dioxide from natural gas at wellheads. A porous material invented by the Rice laboratory of chemist James Tour sequesters carbon dioxide, a greenhouse gas, at ambient temperature with pressure provided by the wellhead and lets it go once the pressure is released. The material shows promise to replace more costly and energy-intensive processes.

New prototype transistor consumes little power

June 4, 2014 7:37 am | News | Comments

The basic element of modern electronics, namely the transistor, suffers from significant current leakage. By enveloping a transistor with a shell of piezoelectric material, which distorts when voltage is applied, researchers in the Netherlands were able to reduce this leakage by a factor of five compared to a transistor without this material.

Controlling thermal conductivities can improve energy storage

June 4, 2014 7:30 am | by Rick Kubetz, Univ. of Illinois | News | Comments

Materials that control heat flow are available with both high and low conductivities, but materials with variable and reversible thermal conductivities are rare. For the first time, researchers at the Univ. of Illinois have experimentally shown that the thermal conductivity of lithium cobalt oxide, an important material for electrochemical energy storage, can be reversibly electrochemically modulated over a considerable range.

Rice Univ. produces carbon-capture breakthrough

June 4, 2014 7:14 am | News | Comments

A porous material invented by the Rice Univ. lab of chemist James Tour sequesters carbon dioxide, a greenhouse gas, at ambient temperature with pressure provided by the wellhead and lets it go once the pressure is released. The material shows promise to replace more costly and energy-intensive processes.

Researchers predict the electrical response of metals to extreme pressures

June 3, 2014 10:50 am | News | Comments

Rensselaer Polytechnic Institute scientists have developed a method that can predict how subjecting metals to severe pressure can lower their electrical resistance. The finding which involved theoretical predictions, use of a supercomputer, and equipment capable of exerting pressures up to 40,000 atmospheres, could have applications in computer chips and other materials that could benefit from specific electrical resistance.

Advertisement

Discovery sheds light on how to control self-assembly process

June 3, 2014 8:35 am | News | Comments

Imagine a tower that builds itself into the desired structure only by choosing the appropriate bricks. Absurd, but in the nano world self-assembly is now a common practice for forming structures. Researchers in Austria have been investigating how they can control the ordering of self-assembling structures and discovered how to switch the assembly process on and off.

Researchers predict the electrical response of metals to extreme pressures

June 3, 2014 8:32 am | by Mary Martialay, Rensselaer Polytechnic Institute | News | Comments

Research published in the Proceedings of the National Academy of Sciences makes it possible to predict how subjecting metals to severe pressure can lower their electrical resistance, a finding that could have applications in computer chips and other materials that could benefit from specific electrical resistance.

Scientists find stronger 3-D material that behaves like graphene

June 3, 2014 8:17 am | by Glennda Chui, SLAC National Accelerator Laboratory | News | Comments

Scientists have discovered a material that has the same extraordinary electronic properties as 2-D graphene, but in a sturdy 3-D form that should be much easier to shape into electronic devices such as very fast transistors, sensors and transparent electrodes. The material, cadmium arsenide, is being explored independently by three groups.

Simple sewing machine has high-tech role in future “soft” machines

June 3, 2014 7:50 am | by Emil Venere, Purdue Univ. | News | Comments

The humble sewing machine could play a key role in creating "soft" robotics, wearable electronics and implantable medical systems made of elastic materials that are capable of extreme stretching. New stretchable technologies could lead to innovations including robots that have human-like sensory skin and synthetic muscles and flexible garments that people might wear to interact with computers or for therapeutic purposes.

Scientists obtain high-speed snapshots of biomolecules

June 2, 2014 12:04 pm | News | Comments

Using synchrotron light, scientists have pioneered a new way to analyze delicate biomolecules. The new approach, called protein serial crystallography, is made possible by a new class of high-intensity x-ray sources called free-electron lasers and could reveal the atomic structure of proteins that were previously inaccessible to synchrotrons.

Advertisement

Scientists use DNA origami trick to create 2-D structures

June 2, 2014 10:23 am | News | Comments

Scientists at New York Univ. and the Univ. of Melbourne have developed a method using DNA origami to turn 1-D nanomaterials into two dimensions. Their breakthrough, published in Nature Nanotechnology, offers the potential to enhance fiber optics and electronic devices by reducing their size and increasing their speed.

New metal-organic framework offers efficient thermal cooling and heating

June 2, 2014 9:09 am | News | Comments

Thermal systems use heat to produce cold, and vice versa. The human body demonstrates this function when it perspires, but what is lacking for devices that operate on this principle are materials capable of sufficiently discharging the water vapor quickly. Metal organic frameworks (MOFs) are well suited to this task. Researchers have built a new 3-D porous MOF from metals and organic linkers that substantially increases water absorption.

Joint implants without an expiration date

June 2, 2014 9:02 am | News | Comments

Artificial joints have a limited lifespan. After a few years, many hip and knee joints have to be replaced. More problematic are intervertebral disc implants, which cannot easily be replaced after they “expire” and are usually reinforced, which restrict a patient’s movement. Researchers in Switzlernad have now succeeded in coating mobile intervertebral disc implants so that they show no wear and will now last for a lifetime.

Neutrons, x-rays reveal structure of high-temperature liquid metal oxides

June 2, 2014 8:16 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

By levitating a bead of ceramic oxide, heating it with a 400-W carbon dioxide laser, then shooting the molten material with x-rays and neutrons, scientists with Oak Ridge and Argonne national laboratories have revealed unprecedented detail of the structure of high-temperature liquid oxides.

Surprising nanotubes: Some slippery, some sticky

June 2, 2014 7:39 am | by David L. Chandler, MIT News Office | News | Comments

Nanotubes have been the subject of intensive research, with potential uses ranging from solar cells to chemical sensors to reinforced composite materials. Most of the research has centered on carbon nanotubes, but other nanotubes’ properties appear to be similar. However, appearances can be deceiving, as researchers have found when examining one variant of nanotube made from boron nitride.

Observing the random diffusion of missing atoms in graphene

May 30, 2014 10:58 am | News | Comments

Imperfections in the regular atomic arrangements in crystals determine many of the properties of a material, and their diffusion is behind many microstructural changes in solids. However, imaging non-repeating atomic arrangements is difficult in conventional materials. Now, researchers in Austria have directly imaged the diffusion of a butterfly-shaped atomic defect in graphene.

The hunt for white aluminium

May 30, 2014 10:29 am | by Katrine Krogh-Jeppesen, DTU | News | Comments

Bang & Olufsen is working with scientists in Denmark to develop a method for creating white aluminium surfaces. This has been exceedingly difficult for manufacturers because the existing technology used to color aluminium cannot be used to produce the color white because the molecules used to create “white” are too big. Rather than use pigments, then, researchers have a way to make it become white during the process.

Smart coating could make oil spill cleanup faster, more efficient

May 30, 2014 9:30 am | News | Comments

In the wake of recent offshore oil spills, and with the growing popularity of “fracking”—in which water is used to release oil and gas from shale—there’s a need for easy, quick ways to separate oil and water. Now, scientists have developed coatings that can do just that. Their report on the materials, which also could stop surfaces from getting foggy and dirty, appears in ACS Applied Materials & Interfaces.

Gold nanoparticles unlock genetic profiles

May 30, 2014 8:47 am | News | Comments

A fast and cost-effective genetic test to determine the correct dosage of blood thinning drugs for the treatment of stroke, heart problems and deep vein thrombosis has been developed by researchers in Singapore. The new test, which uses gold nanoparticles mixed with DNA samples in solution, can quickly recognize three of the most common genetic variations associated with warfarin response.

Unexpected water explains surface chemistry of nanocrystals

May 30, 2014 8:35 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

A team at Lawrence Berkeley National Laboratory found unexpected traces of water in semiconducting nanocrystals. The water as a source of small ions for the surface of colloidal lead sulfide nanoparticles allowed the team to explain just how the surface of these important particles are passivated, meaning how they achieve an overall balance of positive and negative ions.

Zeroing in on the proton's magnetic moment

May 30, 2014 8:32 am | News | Comments

As part of a series of experiments designed to resolve one of the deepest mysteries of physics today, researchers have made the most precise ever direct measurement of the magnetic moment of a proton. The measurement, based on spectroscopy of a single particle in a Penning trap, was completed at a fractional precision of 3 parts per billion, improving the 42-year-old "fundamental constant" by a factor of three.

Stabilizing common semiconductors for solar fuels generation

May 30, 2014 8:17 am | by Kimm Fesenmaier, Caltech | News | Comments

Researchers are trying to develop solar-driven generators that can split water, yielding hydrogen gas that could be used as clean fuel. Such a device requires efficient light-absorbing materials that attract and hold sunlight to drive the chemical reactions involved in water splitting. Semiconductors are excellent light absorbers. However, these materials rust when submerged in the type of water solutions found in such systems.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading