Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Using viruses as nanoscale building blocks

February 21, 2014 11:28 am | by Mona S. Rowe, Brookhaven National Laboratory | News | Comments

From steel beams to plastic Lego bricks, building blocks come in many materials and all sizes. Today, science has opened the way to manufacturing at the nanoscale with biological materials. Potential applications range from medicine to optoelectronic devices. In a paper published in Soft Matter, scientists announced their discovery of a 2-D crystalline structure assembled from the outer shells of a virus.

Tracking catalytic reactions in microreactors

February 21, 2014 11:08 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A pathway to more effective and efficient synthesis of pharmaceutical drugs and other flow reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start-to-finish. The results not only provided a better understanding of the chemistry behind the catalytic reactions, they also revealed opportunities for optimization.

New chemistry could make it easier to design materials to order

February 21, 2014 10:59 am | News | Comments

Researchers in the U.K. have developed a method of controlling the composition of a range of polymers, the large molecules that are commonly used as plastics and fibers. They have demonstrated how the chemical reactions can be manipulated, especially in fixing the composition of a polymer using a mixture of up to three different monomers. The secret lies in understanding and switching “on” and “off” the catalyst used to make the polymers.

Advertisement

New, improved photocatalytic materials developed in Japan

February 21, 2014 10:50 am | News | Comments

The scarcity of ultraviolet (UV) light in sunlight has held back the usefulness of titanium dioxide-based photocatalysts. Through the application of nanotechnology, researchers in Japan have recently succeeded in the development of better titanium dioxide-based material that can be activated by visible light. The solution lies in an array of nanoparticles that “simulate” the photoexcitation of UV light.

Nanopillars could improve conversion of heat to electricity

February 21, 2014 7:36 am | News | Comments

Univ. of Colorado Boulder scientists have found a creative way to radically improve thermoelectric materials, a finding that could one day lead to the development of improved solar panels and more energy-efficient cooling equipment. The technique, building an array of tiny pillars on top of a sheet of thermoelectric material, represents an entirely new way of attacking a century-old problem.

Vibration energy the secret to self-powered electronics

February 21, 2014 7:24 am | News | Comments

A multi-university team of engineers has developed what could be a promising solution for charging smartphone batteries on the go, without the need for an electrical cord. Incorporated directly into a cell phone housing, the team's nanogenerator could harvest and convert vibration energy from a surface, such as the passenger seat of a moving vehicle, into power for the phone.

Quantum computation in diamond

February 20, 2014 3:09 am | News | Comments

Computers don’t need to be error-free. They just need to correct their errors reliably, which means that controlling a quantum system is crucial to the function of a quantum computer. A research team has now found a way to control the quantum system of a diamond which has a few nitrogen impurities. They have used the system to perform a logic operation and error correction in a quantum register made from nuclear spins of the gemstone.

A stretchable highway for light

February 20, 2014 2:53 am | News | Comments

A team of Belgian researchers have made what may be the first optical circuit that uses interconnections that are not only bendable, but also stretchable. These new interconnections, made of a rubbery transparent material called PDMS, guide light along their path even when stretched up to 30% and when bent around an object the diameter of a human finger.

Advertisement

Silicon-germanium chip sets new speed record

February 19, 2014 2:42 pm | by Rick Robinson, Georgia Institute of Technology | News | Comments

A research collaboration consisting of IHP-Innovations for High Performance Microelectronics in Germany and the Georgia Institute of Technology has demonstrated the world's fastest silicon-based device to date. The investigators operated a silicon-germanium (SiGe) transistor at 798 GHz fMAX, exceeding the previous speed record for silicon-germanium chips by about 200 GHz.

Controlling magnetism with an electric field

February 19, 2014 8:16 am | by Marie Guma-Diaz and Annette Gallagher UM News | News | Comments

There is a big effort in industry to produce electrical devices with more and faster memory and logic. Magnetic memory elements, such as in a hard drive, and in the future in what is called MRAM (magnetic random access memory), use electrical currents to encode information. However, the heat which is generated is a significant problem, since it limits the density of devices and hence the performance of computer chips.

Under Armour stumbles in Olympic sponsorship

February 18, 2014 5:08 pm | by Mae Anderson - AP Business Writer - Associated Press | News | Comments

The 2014 Sochi Olympics were expected to be a triumphant moment for the U.S. speedskating team—and the squad's sponsor, Under Armour. It's been anything but that. After a strong showing on the World Cup circuit, the team headed to the Games in skinsuits that Under Armour developed and called the fastest speedskating suits in the world.

Researchers develop sticky nanoparticles to fight heart disease

February 18, 2014 10:51 am | News | Comments

Clemson Univ. researchers have developed nanoparticles that can deliver drugs targeting damaged arteries, a non-invasive method to fight heart disease. Heart disease is the leading cause of death in the U.S., according to the Centers for Disease Control and Prevention. One of the standard ways to treat clogged and damaged arteries currently is to implant vascular stents, which hold the vessels open and release such drugs as paclitaxel.

Pomegranate-inspired design solves problems for lithium-ion batteries

February 18, 2014 8:46 am | News | Comments

An electrode designed like a pomegranate—with silicon nanoparticles clustered like seeds in a tough carbon rind—overcomes several remaining obstacles to using silicon for a new generation of lithium-ion batteries, say its inventors at Stanford Univ. and the SLAC National Accelerator Laboratory.

Advertisement

Caps not the culprit in nanotube chirality

February 18, 2014 8:14 am | News | Comments

A single-walled carbon nanotube grows from the round cap down, so it’s logical to think the cap’s formation determines what follows. But according to researchers at Rice Univ., that’s not entirely so. Theoretical physicist Boris Yakobson and his Rice colleagues found through exhaustive analysis that those who wish to control the chirality of nanotubes would be wise to look at other aspects of their growth.

Rice’s carbon nanotube fibers outperform copper

February 14, 2014 7:22 am | Videos | Comments

On a pound-per-pound basis, carbon nanotube-based fibers invented at Rice Univ. have greater capacity to carry electrical current than copper cables of the same mass, according to new research. While individual nanotubes are capable of transmitting nearly 1,000 times more current than copper, the same tubes coalesced into a fiber using other technologies fail long before reaching that capacity.

Scientists find new path to loss-free electricity

February 13, 2014 2:06 pm | News | Comments

Superconductor “recipes” are frequently tweaked by swapping out elements or manipulating the valence electrons to strike the perfect conductive balance. Most high-temperature superconductors feature only one orbital impacting performance. But what about introducing more complex configurations? Now, Brookhaven National Laboratory’s physicists have combined atoms with multiple orbitals and precisely pinned down their electron distributions.

Possible explanation for light-degradation silicon solar cells

February 13, 2014 10:19 am | by Ralf Butscher, Helmholtz Center | News | Comments

An undesired effect in thin film amorphous silicon solar cells has puzzled the scientific community for the last 40 years. This effect, known as light-induced degradation, is responsible for reducing solar cell efficiency over time. Researchers in Germany have recently demonstrated that tiny voids within the silicon network are partly responsible for 10 to 15% efficiency loss as soon as they are used.

Researchers develop first single-molecule LED

February 13, 2014 9:42 am | News | Comments

A team in France has greatly miniaturized the light-emitting diode (LED) by creating one from a single polythiophene wire placed between the tip of a scanning tunneling microscope and a gold surface. This nanowire, which is made of the same hydrogen, carbon and sulfur components found in much larger LEDs, emits light only when the current passes in a certain direction.

Stirring-up atomtronics in a quantum circuit

February 12, 2014 5:02 pm | by E. Edwards, JQI | News | Comments

Modern electronics relies on utilizing the charge properties of the electron. The emerging field of atomtronics, however, uses ensembles of atoms to build analogs to electronic circuit elements. Physicists have built a superfluid atomtronic circuit that have allowed them to demonstrate a tool that is critical to electronics: hysteresis. It is the first time that hysteresis has been observed in an ultracold atomic gas.

Solving an evolutionary puzzle

February 12, 2014 4:58 pm | News | Comments

For four decades, polychlorinated biphenyls (PCBs) and heavy metals from nearby manufacturing plants flowed into New Bedford Harbor, creating one of the EPA’s largest Superfund cleanup sites. It’s also the site of an evolutionary puzzle: small Atlantic killifish are not only tolerating the toxic conditions in the harbor, they seem to be thriving there. In a new paper, researchers may have an explanation for their genetic resistance to PCBs.

Andor Technology joins Oxford Instruments to drive growth

February 12, 2014 8:57 am | News | Comments

Oxford Instruments, a leading provider of high-technology tools for industry and research has recently acquired Andor. A supplier of high-performance cameras, microscope systems and software for the physical science and life science industries, Andor will continue to focus on growing its existing core markets and will spearhead Oxford Instruments strategic expansion into the nanobiotechnology arena.

Physicists reveal novel magnetoelectric effect

February 12, 2014 8:53 am | by Chris Branam, Univ. of Arkansas | News | Comments

New research at the Univ. of Arkansas reveals a novel magnetoelectric effect that makes it possible to control magnetism with an electric field. The novel mechanism may provide a new route for using multiferroic materials for the application of RAM (random access memories) in computers and other devices, such as printers.

New technology reconstructs smallest features of human fingerprints

February 12, 2014 8:42 am | News | Comments

An international partnerships is aiming to develop robust fingerprint sensors with resolution beyond today’s 500 dpi international standards, the minimum required by the U.S. Federal Bureau of Investigation. The new platform uses vertical piezoelectric nanowire matrices designed using multiphysics modeling software.

How to make the wonder material graphene superconducting

February 11, 2014 1:42 pm | News | Comments

An international team has recently unveiled a superconducting pairing mechanism in calcium-doped graphene. The pairing, which was using a angle-resolved photoemission spectroscopy method, is important because graphene is easily doped or functionalized with chemicals, allowing scientists to more fully explore the nature of superconductivity.

Fine-tuning a rainbow of colors at the nanoscale

February 11, 2014 1:34 pm | News | Comments

Engineers are increasingly turning to plasmonic color filters (PCFs) to create and control a broad spectrum of colors for imaging applications. However, PCF light transmission efficiency has been limited to only about 30%, less than half the rate of conventional filters. Researchers have now developed a new PCF scheme that achieves a transmission efficiency of 60 to 70%.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading