Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Rice-sized laser bodes well for quantum computing

January 15, 2015 2:16 pm | by Catherine Zandonella, Princeton Univ. | News | Comments

Princeton Univ. researchers have built a rice grain-sized laser powered by single electrons tunneling through artificial atoms known as quantum dots. The tiny microwave laser, or "maser," is a demonstration of the fundamental interactions between light and moving electrons.

The way liquids and glasses “relax”

January 15, 2015 2:04 pm | by Michael Baum, NIST | News | Comments

A new insight into the fundamental mechanics of the movement of molecules recently published by researchers at NIST offers a surprising view of what happens when you pour a liquid out of a cup. More important, it provides a theoretical foundation for a molecular-level process that must be controlled to ensure the stability of important protein-based drugs at room temperature.

Gold nanoparticles show promise for early detection of heart attacks

January 15, 2015 12:29 pm | by New York Univ. | News | Comments

New York Univ. Polytechnic School of Engineering professors have been collaborating with researchers from Peking Univ. on a new test strip that is demonstrating great potential for the early detection of certain heart attacks. The new colloidal gold test strip can test for cardiac troponin I (cTn-I) detection.

Advertisement

“Smart windows” have potential to keep heat our, save energy

January 15, 2015 9:53 am | by American Chemical Society | News | Comments

Windows allow brilliant natural light to stream into homes and buildings. Along with light comes heat that, in warm weather, we often counter with energy-consuming air conditioning. Now scientists are developing a new kind of "smart window" that can block out heat when the outside temperatures rise. The advance could one day help consumers better conserve energy on hot days and reduce electric bills.

2-D metamaterial surface manipulates light

January 15, 2015 9:02 am | by Penn State Univ. | News | Comments

A single layer of metallic nanostructures has been designed, fabricated and tested by a team of Penn State Univ. electrical engineers that can provide exceptional capabilities for manipulating light. This engineered surface, which consists of a periodic array of strongly coupled nanorod resonators, could improve systems that perform optical characterization in scientific devices, sensing or satellite communications.

New material, technique efficiently produce hydrogen, syngas fuel feedstock

January 15, 2015 8:00 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A team of chemical engineering researchers has developed a technique that uses a new catalyst to convert methane and water into hydrogen and a fuel feedstock called syngas with the assistance of solar power. The catalytic material is more than three times more efficient at converting water into hydrogen gas than previous thermal water-splitting methods.

Rapid journey through a crystal lattice

January 15, 2015 7:39 am | by Andreas Battenberg, TUM | News | Comments

The time frames, in which electrons travel within atoms, are unfathomably short. For example, electrons excited by light change their quantum-mechanical location within mere attoseconds. But how fast do electrons whiz across distances corresponding to the diameter of individual atomic layers?

Carbon nanotube finding could lead to flexible electronics with longer battery life

January 14, 2015 4:04 pm | by Adam Malecek, Univ. of Wisconsin-Madison | News | Comments

Univ. of Wisconsin-Madison materials engineers have made a significant leap toward creating higher-performance electronics with improved battery life and the ability to flex and stretch. The team has reported the highest-performing carbon nanotube transistors ever demonstrated. In addition to paving the way for improved consumer electronics, this technology could also have specific uses in industrial and military applications.

Advertisement

Laser-induced graphene “super” for electronics

January 14, 2015 10:34 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists advanced their recent development of laser-induced graphene by producing and testing stacked, 3-D supercapacitors, energy storage devices that are important for portable, flexible electronics. The Rice laboratory of chemist James Tour discovered last year that firing a laser at an inexpensive polymer burned off other elements and left a film of porous graphene.

DNA “glue” could be used to build tissues, organs

January 14, 2015 10:23 am | by American Chemical Society | News | Comments

DNA molecules provide the "source code" for life in humans, plants, animals and some microbes. But now researchers report an initial study showing that the strands can also act as a glue to hold together 3-D-printed materials that could someday be used to grow tissues and organs in the laboratory.

Zinc-oxide materials tapped for tiny energy harvesting devices

January 14, 2015 8:45 am | by American Institute of Physics | News | Comments

Today, we're surrounded by a variety of electronic devices that are moving increasingly closer to us. Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable and powered by ambient renewable energy. This last goal inspired a group of researchers to explore zinc oxide as an effective material choice.

Single-photon emission enhancement

January 14, 2015 8:01 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have demonstrated a new way to enhance the emission of single photons by using "hyperbolic metamaterials," a step toward creating devices in work aimed at developing quantum computers and communications technologies. Optical metamaterials harness clouds of electrons called surface plasmons to manipulate and control light.

Crush those clinkers while they’re hot

January 14, 2015 7:48 am | by Mike Williams, Rice Univ. | News | Comments

Making cement is a centuries-old art that has yet to be perfected, according to researchers at Rice Univ. who believe it can be still more efficient. Former Rice graduate student Lu Chen and materials scientist Rouzbeh Shahsavari calculated that fine-tuning the process by which round lumps of calcium silicate called clinkers are turned into cement can save a lot of energy.

Advertisement

Glass for battery electrodes

January 13, 2015 11:51 am | by ETH Zurich | News | Comments

For some time now, energy experts have been adamant that we will need much more clean energy in the future if we are to replace fossil fuel sources and reduce carbon dioxide emissions. For example, electric cars will need to replace the petrol-powered cars driving on our roads.

Researchers develop multiferroic materials, devices integrated with silicon chips

January 13, 2015 10:59 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team led by North Carolina State Univ. has made two advances in multiferroic materials, including the ability to integrate them on a silicon chip, which will allow the development of new electronic memory devices. The researchers have already created prototypes of the devices and are in the process of testing them. Multiferroic materials have both ferroelectric and ferromagnetic properties.

Solar cell polymers with multiplied electrical output

January 13, 2015 8:52 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

One challenge in improving the efficiency of solar cells is some of the absorbed light energy is lost as heat. So scientists have been looking to design materials that can convert more of that energy into useful electricity. Now a team from Brookhaven National Laboratory and Columbia Univ. has paired up polymers that recover some of that lost energy by producing two electrical charge carriers per unit of light instead of the usual one.

Controlling the properties of nanomaterials

January 13, 2015 8:43 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory are learning how the properties of water molecules on the surface of metal oxides can be used to better control these minerals and use them to make products such as more efficient semiconductors for organic light-emitting diodes and solar cells, safer vehicle glass in fog and frost and more environmentally friendly chemical sensors for industrial applications. 

Catalyst process uses light for rapid polymerization

January 13, 2015 8:12 am | by Melissa Van De Werfhorst, Univ. of California, Santa Barbara | News | Comments

A team of chemistry and materials science experts from Univ. of California, Santa Barbara and The Dow Chemical Company has created a novel way to overcome one of the major hurdles preventing the widespread use of controlled radical polymerization.

Manipulating nanoribbons at the molecular level

January 12, 2015 12:44 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

Narrow strips of graphene called nanoribbons exhibit extraordinary properties that make them important candidates for future nanoelectronic technologies. A barrier to exploiting them, however, is the difficulty of controlling their shape at the atomic scale, a prerequisite for many possible applications.

Novel superconducting hybrid crystals developed

January 12, 2015 11:39 am | by Gertie Skaarup, Niels Bohr Institute | News | Comments

A new type of nanowire crystals that fuses semiconducting and metallic materials on the atomic scale could lay the foundation for future semiconducting electronics. Researchers at the Univ. of Copenhagen are behind the breakthrough, which has great potential. The development and quality of extremely small electronic circuits are critical to how and how well future computers and other electronic devices will function.

One step closer to a next-generation electric car battery

January 12, 2015 11:22 am | by Nick Manning, Univ. of Waterloo | News | Comments

An ultra-thin nanomaterial is at the heart of a major breakthrough by Univ. of Waterloo scientists who are in a global race to invent a cheaper, lighter and more powerful rechargeable battery for electric vehicles. Their discovery of a material that maintains a rechargable sulphur cathode helps to overcome a primary hurdle to building a lithium-sulphur battery.

Quantum dots have made quantum leaps

January 9, 2015 8:57 am | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Outside his career as a noted nanochemist, Lawrence Berkeley National Laboratory (Berkeley Lab) director Paul Alivisatos is an avid photographer. To show off his photos, his preferred device is a Kindle Fire HDX tablet because “the color display is a whole lot better than other tablets,” he says.

Atomic placement of elements counts for strong concrete

January 9, 2015 8:20 am | by Mike Williams, Rice Univ. | News | Comments

Even when building big, every atom matters, according to new research on particle-based materials at Rice Univ. Rice researchers have published a study showing what happens at the nanoscale when “structurally complex” materials like concrete rub against each other. The scratches they leave behind can say a lot about their characteristics.

Solving a case of intercellular entrapment

January 9, 2015 7:51 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

Optogenetics, which uses light to control cellular events, is poised to become an important technology in molecular biology and beyond. The Reich Group in Univ. of California, Santa Barbara’s Dept. of Chemistry and Biochemistry has made a major contribution to this emergent field by developing a light-activated nanocarrier that transports proteins into cells and releases them on command.

Compact batteries enhanced by spontaneous silver matrix formations

January 9, 2015 7:40 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

In a promising lithium-based battery, the formation of a highly conductive silver matrix transforms a material otherwise plagued by low conductivity. To optimize these multi-metallic batteries, scientists needed a way to see where, when and how these silver, nanoscale "bridges" emerge. Now, researchers have used x-rays to map this changing atomic architecture and revealed its link to the battery's rate of discharge.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading