Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Nanoparticle network could bring fast-charging batteries

December 4, 2014 7:46 am | by Emil Venere, Purdue Univ. | News | Comments

A new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles. Batteries have two electrodes, called an anode and a cathode. The anodes in most of today's lithium-ion batteries are made of graphite.

Buckyballs enhance carbon capture

December 4, 2014 7:37 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have discovered an environmentally friendly carbon-capture method that could be equally adept at drawing carbon dioxide emissions from industrial flue gases and natural gas wells. The Rice laboratory of chemist Andrew Barron revealed in a proof-of-concept study that amine-rich compounds are highly effective at capturing the greenhouse gas when combined with carbon-60 molecules.

Geckos are sticky without effort

December 3, 2014 4:56 pm | by Iqbal Pittalwala, Univ. of California, Riverside | News | Comments

Geckos, found in places with warm climates, have fascinated people for hundreds of years. Scientists have been especially intrigued by these lizards, and have studied a variety of features such as the adhesive toe pads on the underside of gecko feet with which geckos attach to surfaces with remarkable strength.

Advertisement

Technique simultaneously determines nanomaterials’ chemical makeup

December 3, 2014 8:47 am | by Angela Hardin, Argonne National Laboratory | News | Comments

A team of researchers from Argonne National Laboratory and Ohio Univ. have devised a powerful technique that simultaneously resolves the chemical characterization and topography of nanoscale materials down to the height of a single atom. The technique combines synchrotron x-rays (SX) and scanning tunneling microscopy (STM). In experiments, the researchers used SX as a probe and a nanofabricated smart tip of a STM as a detector.

Researchers develop inexpensive hydrolysable polymer

December 2, 2014 4:50 pm | by Rick Kubetz, Engineering Communications Office | News | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have figured out how to reverse the characteristics of a key bonding material—polyurea—providing an inexpensive alternative for a broad number of applications, such as drug delivery, tissue engineering and packaging.

Lengthening the life of high-capacity silicon electrodes in rechargeable lithium batteries

December 2, 2014 4:14 pm | by Mary Beckman, Pacific Northwest National Laboratory | News | Comments

A new study will help researchers create longer-lasting, higher-capacity lithium rechargeable batteries, which are commonly used in consumer electronics. In a study published in ACS Nano, researchers showed how a coating that makes high-capacity silicon electrodes more durable could lead to a replacement for lower-capacity graphite electrodes.

Chemists fabricate novel rewritable paper

December 2, 2014 12:44 pm | by Iqbal Pittalwala, Univ. of California, Riverside | News | Comments

First developed in China in about the year A.D. 150, paper has many uses, the most common being for writing and printing upon. Indeed, the development and spread of civilization owes much to paper’s use as writing material. According to some surveys, 90% of all information in businesses today is retained on paper, even though the bulk of this printed paper is discarded after just one-time use.

First pictures of baby nanotubes

December 2, 2014 11:18 am | by NIST | News | Comments

Single-walled carbon nanotubes are loaded with desirable properties. In particular, the ability to conduct electricity at high rates of speed makes them attractive for use as nanoscale transistors. But this and other properties are largely dependent on their structure, and their structure is determined when the nanotube is just beginning to form.

Advertisement

Nutrition, safety key to consumer acceptance of nanotech

December 2, 2014 10:08 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

New research from North Carolina State Univ. and the Univ. of Minnesota shows the majority of consumers will accept the presence of nanotechnology or genetic modification (GM) technology in foods—but only if the technology enhances the nutrition or improves the safety of the food. The researchers conducted a nationally representative survey of 1,117 U.S. consumers.

Research shows way to design digital metamaterials

December 1, 2014 2:39 pm | by Evan Lerner, Univ. of Pennsylvania | Videos | Comments

Metamaterials, precisely designed composite materials that have properties not found in natural ones, could be used to make light-bending invisibility cloaks, flat lenses and other otherwise impossible devices. Figuring out the necessary composition and internal structure to create these unusual effects is a challenge but new research from the Univ. of Pennsylvania presents a way of simplifying things.

“Superomniphobic” texture capable of repelling all liquids

December 1, 2014 10:45 am | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

A pair of researchers from the Univ. of California, Los Angeles Henry Samueli School of Engineering and Applied Science has created the first surface texture that can repel all liquids, no matter what material the surface is made of. Because its design relies only on the physical attributes of the texture, the texture could have industrial or biomedical applications.

High-tech mirror to beam heat away from buildings into space

December 1, 2014 10:24 am | by Chris Cesare, Stanford Univ. | News | Comments

Stanford Univ. engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space. The heart of the invention is an ultra-thin, multi-layered material that deals with light, both invisible and visible, in a new way.

A golden approach to low-cost fuel, chemical production

December 1, 2014 7:59 am | by Kim Thurler, Tufts Univ. | News | Comments

New catalysts designed and investigated by Tufts Univ. have the potential to greatly reduce processing costs in future fuels, such as hydrogen. The catalysts are composed of a unique structure of single gold atoms bound by oxygen to several sodium or potassium atoms and supported on non-reactive silica materials.

Advertisement

Microbullet hits confirm graphene’s strength

December 1, 2014 7:52 am | by Mike Williams, Rice Univ. | Videos | Comments

Graphene’s great strength appears to be determined by how well it stretches before it breaks, according to Rice Univ. scientists who tested the material’s properties by peppering it with microbullets. The 2-D carbon honeycomb discovered a decade ago is thought to be much stronger than steel. But the scientists didn’t need even a pound of graphene to prove the material is on average 10 times better than steel at dissipating kinetic energy.

Protons fuel graphene prospects

November 26, 2014 9:11 am | by Univ. of Manchester | News | Comments

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, Univ. of Manchester researchers have found. Published in Nature, the discovery could revolutionize fuel cells and other hydrogen-based technologies as they require a barrier that only allow protons to pass through.

“Giant” charge density disturbances discovered in nanomaterials

November 26, 2014 9:02 am | by Forschungszentrum Juelich | News | Comments

In metals such as copper or aluminum, so-called conduction electrons are able to move around freely, in the same way as particles in a gas or a liquid. If, however, impurities are implanted into the metal's crystal lattice, the electrons cluster together in a uniform pattern around the point of interference, resembling the ripples that occur when a stone is thrown into a pool of water.

Gasoline from sawdust

November 26, 2014 8:45 am | by KU Leuven | News | Comments

Researchers at KU Leuven’s Centre for Surface Chemistry and Catalysis have successfully converted sawdust into building blocks for gasoline. Using a new chemical process, they were able to convert the cellulose in sawdust into hydrocarbon chains. These hydrocarbons can be used as an additive in gasoline, or as a component in plastics.

A hybrid vehicle that delivers DNA

November 26, 2014 7:46 am | by Cory Nealon, Univ. at Buffalo | News | Comments

A new hybrid vehicle is under development. Its performance isn’t measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, influenza and other maladies. The technology is a biomedical advancement that could help unleash the potential of DNA vaccines, which despite much research, have yet to make a significant impact in the treatment of major illnesses.

Researchers develop heat-conducting plastic

November 25, 2014 8:59 pm | by Nicole Casal Moore, Univ. of Michigan | News | Comments

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat, but a Univ. of Michigan research team has made a plastic blend that does so 10 times better than its conventional counterparts. Plastics are inexpensive, lightweight and flexible, but because they restrict the flow of heat, their use is limited in technologies like computers, smartphones, cars or airplanes.

Material snaps together like Legos

November 25, 2014 4:45 pm | by Brendan M. Lynch, KU News Service | News | Comments

Physicists at the Univ. of Kansas have fabricated an innovative substance from two different atomic sheets that interlock much like Lego toy bricks. The researchers said the new material, made of a layer of graphene and a layer of tungsten disulfide, could be used in solar cells and flexible electronics.

Testing the Limits of Indentation

November 25, 2014 4:26 pm | by Duanjie Li, PhD and Pierre Leroux, Nanovea | Articles | Comments

A tensile strength is a common materials test. Typical, a sample is subjected to controlled tension until it fails, providing valuable data for fundamental materials development or quality control. The key data acquired include maximum elongation, reduction in cross-section and ultimate tensile strength. Derived from these are a host of properties: Young’s modulus, yield strength, Poisson’s ratio and strain-hardening characteristics.

Researchers develop efficient method to produce nanoporous metals

November 25, 2014 10:42 am | by Kenneth Ma, LLNL | News | Comments

Nanoporous metals have a wide range of applications because of their superior qualities. They posses a high surface area for better electron transfer, which can lead to the improved performance of an electrode in an electric double capacitor or battery. Nanoporous metals offer an increased number of available sites for the adsorption of analytes, a highly desirable feature for sensors.

Engineers climb walls using gecko-inspired climbing device

November 25, 2014 8:54 am | by Bjorn Carey, Stanford News Service | Videos | Comments

If you spot someone stuck to the sheer glass side of a building on the Stanford Univ. campus, it's probably Elliot Hawkes testing his dissertation work. Hawkes, a mechanical engineering graduate student, works with a team of engineers who are developing controllable, reusable adhesive materials that, like the gecko toes that inspire the work, can form a strong bond with smooth surfaces but also release with minimal effort.

Improving technology used in digital memory

November 25, 2014 7:48 am | by Scott Schrage, University Communications, Univ. of Nebraska-Lincoln | News | Comments

The improvements in random access memory (RAM) that have driven many advances of the digital age owe much to the innovative application of physics and chemistry at the atomic scale. Accordingly, a team led by Univ. of Nebraska-Lincoln researchers has employed a Nobel Prize-winning material and common household chemical to enhance the properties of a component primed for the next generation of high-speed, high-capacity RAM.

Nanoparticles infiltrate, kill cancer cells from within

November 24, 2014 11:06 am | by Melanie Titanic-Schefft, Univ. of Cincinnati | News | Comments

Conventional treatment seeks to eradicate cancer cells by drugs and therapy delivered from outside the cell, which may also affect (and potentially harm) nearby normal cells. In contrast to conventional cancer therapy, a Univ. of Cincinnati team has developed several novel designs for iron-oxide based nanoparticles that detect, diagnose and destroy cancer cells using photo-thermal therapy (PTT).

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading