Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Powerful new sensor amplifies optical signature of single molecules by 100 billion times

July 15, 2014 5:19 pm | News | Comments

Scientists in Texas have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. The new imaging method uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

New York invests in nanotech with General Electric

July 15, 2014 4:17 pm | by David Klepper - Associated Press - Associated Press | News | Comments

New York state is teaming with General Electric Co. and other companies on a $500 million initiative to spur high-tech manufacturing of miniature electronics, Gov. Andrew Cuomo and GE CEO Jeffrey Immelt announced Tuesday. The state will invest $135 million for the collaborative program, which will be based out of the SUNY College of Nanoscale Science and Engineering in Albany.

Fundamental chemistry findings could help extend Moore’s Law

July 15, 2014 3:49 pm | by Kate Greene, Berkeley Lab | News | Comments

The doubling of transistors on a microprocessor occurs roughly every two years, and is the outcome of what is called Moore’s Law. In a bid to continue this trend of decreasing transistor size and increasing computation and energy efficiency, chip-maker Intel has partnered with Lawrence Berkeley National Laboratory to design an entirely new kind of photoresist, one that combines the best features of two existing types of resist.

Advertisement

Removing parts of shape-shifting protein explains how blood clots

July 15, 2014 1:54 pm | News | Comments

Prothrombin is an inactive precursor for thrombin, a key blood-clotting protein, and is essential for life because of its ability to coagulate blood. Using x-ray crystallography, researchers have published the first image of this important protein. By removing disordered sections of the protein’s structure, scientists have revealed its underlying molecular mechanism for the first time.

3-D nanostructure could benefit nanoelectronics, gas storage

July 15, 2014 10:57 am | by B.J. Almond, Rice Univ. | News | Comments

A 3-D porous nanostructure would have a balance of strength, toughness and ability to transfer heat that could benefit, nanoelectronics, gas storage and composite materials that perform multiple functions, according to engineers at Rice Univ. The researchers made this prediction by using computer simulations to create a series of 3-D prototypes with boron nitride, a chemical compound made of boron and nitrogen atoms.

Swiss cross made from just 20 single atoms

July 15, 2014 9:14 am | News | Comments

Together with teams from Finland and Japan, physicists from the Univ. of Basel in Switzerland were able to place 20 single bromine atoms on a fully insulated surface at room temperature to form the smallest “Swiss cross” ever created. The effort is a breakthrough because the fabrication of artificial structures on an insulator at room temperature is difficult. It is largest number of atomic manipulations ever achieved at room temperature.

Labs characterize carbon for batteries

July 15, 2014 8:04 am | by Mike Williams, Rice Univ. | News | Comments

Lithium-ion batteries could benefit from a theoretical model created at Rice Univ. and Lawrence Livermore National Laboratory that predicts how carbon components will perform as electrodes. The model is based on intrinsic electronic characteristics of materials used as battery anodes. These include the material’s quantum capacitance and the material’s absolute Fermi level.

Researchers discover boron “buckyball”

July 14, 2014 11:44 am | News | Comments

The discovery of buckyballs helped usher in the nanotechnology era. Now, researchers from Brown Univ. and colleagues from China have shown that boron, carbon’s neighbor on the periodic table, can form a cage-like molecule similar to the buckyball. Until now, such a boron structure had only been a theoretical speculation.

Advertisement

From stronger Kevlar to better biology

July 14, 2014 9:17 am | by Angela Herring, Northeastern Univ. | News | Comments

Mar­ilyn Minus, a materials expert and assis­tant pro­fessor at Northeastern Univ., is exploring directed self-assembly methods using carbon nanotubes and polymer solutions. So far, she’s used the approach to develop a polymer com­posite mate­rial that is stronger than Kevlar yet much lighter and less expen­sive. Minus is now expanding this work to incor­po­rate more polymer classes: flame retar­dant mate­rials and bio­log­ical molecules.

Chemists develop technology to produce clean-burning hydrogen fuel

July 14, 2014 9:12 am | News | Comments

Rutgers Univ. researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel. The new catalyst is based on carbon nanotubes and may rival cost-prohibitive platinum for reactions that split water into hydrogen and oxygen.

Phase-changing material could allow robots to switch between hard and soft states

July 14, 2014 7:35 am | by Helen Knight, MIT News correspondent | Videos | Comments

In the movie “Terminator 2,” the shape-shifting T-1000 robot morphs into a liquid state to squeeze through tight spaces or to repair itself when harmed. Now a phase-changing material built from wax and foam, and capable of switching between hard and soft states, could allow even low-cost robots to perform the same feat.

Oxygen extends graphene’s reach

July 11, 2014 1:05 pm | News | Comments

The addition of elements to the surface of graphene can modify the material’s physical and chemical properties, potentially extending the range of possible applications. Recently performed theoretical calculations at RIKEN in Japan show that the addition of oxygen to graphene on copper substrates results in enhanced functionalization. The resulting structure, known as an enolate, make support applications that require catalytic response.

Peeling back the layers of thin film structure and chemistry

July 11, 2014 12:33 pm | by Erika Gebel Berg, Argonne National Laboratory | News | Comments

Perovskites continue to entice materials scientists with their mix of conductivity, ferroelectricity, ferromagnetism, and catalytic activity. In recent years, scientists realized that they could vastly improve the properties of perovskites by assembling them into thin films, but nobody knew the reason why. But studying the chemistry layer-by-layer, experts working with x-ray beamline at Argonne National Laboratory are getting close.

Advertisement

2014 R&D 100 Award winners announced

July 11, 2014 9:32 am | by Lindsay Hock, Managing Editor | Award Winners

The editors of R&D Magazine have announced the winners of the 52nd annual R&D 100 Awards, an international competition that recognizes the 100 most technologically significant products introduced into the marketplace over the past year. The R&D 100 Awards recognize excellence across a wide range of industries...

Uncertainty gives scientists new confidence in search for novel materials

July 11, 2014 8:19 am | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

Scientists at Stanford Univ. and the Dept. of Energy (DOE)’s SLAC National Accelerator Laboratory have found a way to estimate uncertainties in computer calculations that are widely used to speed the search for new materials for industry, electronics, energy, drug design and a host of other applications. The technique, reported in Science, should quickly be adopted in studies that produce some 30,000 scientific papers per year.

2014 R&D 100 Award Winners

July 11, 2014 7:30 am | Award Winners

Introducing R&D Magazine's 2014 R&D 100 Award winners. The 2014 R&D 100 Award Winners are listed below in alphabetical order by the name of the primary developer company.

New technology offers precise control of molecular self-assembly

July 10, 2014 5:09 pm | News | Comments

A research group based in Japan has developed a new methodology that can easily and precisely control the timing, structure, and functions in the self-assembly of pi-conjugated molecules, which are an important enabling building block in the field of organic electronics. One of the key steps is keeping these molecules in a liquid form at room temperature.

Silicon oxide memories catch manufacturers’ eye

July 10, 2014 5:06 pm | by Jade Boyd, Rice Univ. | News | Comments

First developed five years ago at Rice Univ., silicon oxide memories are a type of two-terminal, “resistive random-access memory” (RRAM) technology that beats flash memory’s data density by a factor of 50. At Rice, the laboratory of chemist and 2013 R&D Magazine Scientist of the Year James Tour has recently developed a new version of RRAM that Tour believes outperforms more than a dozen competing versions.

“Nanopixels” promise thin, flexible high-res displays

July 10, 2014 9:35 am | News | Comments

A team in the U.K. has found that by sandwiching a 7-nm thick layer of a phase change material between two layers of a transparent electrode they could use a tiny current to “draw” images within the sandwich “stack”. The discovery could make it possible to create pixels just a few hundred nanometers across and pave the way for extremely high-resolution and low-energy thin, flexible displays.

Technology illuminates colder objects in deep space

July 10, 2014 7:42 am | News | Comments

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern Univ. team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space. The new technology uses a type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb).

Even geckos can lose their grip

July 9, 2014 2:17 pm | News | Comments

Geckos and spiders seem to be able to sit still forever upside down. But sooner or later the grip is lost, no matter how little force is acting on it. Engineers, using scanning electron microscopy, have recently demonstrated why this is so by showing how heat, and the subsequent movement of molecules at the nanoscale, eventually force loss of adhesion.

Highway for ultracold atoms in light crystals

July 9, 2014 2:10 pm | News | Comments

When a superconductor is exposed to a magnetic field, a surface current creates a magnetic field that cancels the field inside the superconductor. This phenomenon, known as the Meissner-Ochsenfeld effect, was first observed in 1933. In a research first, scientists have succeeded in measuring an analogue of the Meissner effect in an optical crystal with ultracold atoms. This validates theoretical predictions dating back more than 20 years.

Chemists develop novel catalyst with two functions

July 9, 2014 8:47 am | by Dr. Julia Weiler, Ruhr Univ. Bochum | News | Comments

A new type of catalyst, based on carbon, can facilitate two opposite reactions: electrolysis of water and combustion of hydrogen with oxygen. This bi-functionality, developed by researchers in Germany, is made possible from its construction: manganese-oxide or cobalt-oxide nanoparticles which are embedded in specially modified carbon, then integrated with nitrogen atoms in specific positions.

Using sand to improve battery performance

July 8, 2014 7:43 pm | by Sean Nealon, Univ. of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have used a quartz-rich material to fabricate a lithium-ion battery that outperforms the current industry standard by three times. This key material? Sand. Through a heating process with salt and magnesium, the scientists created a porous nano-silicon sponge that greatly increases active surface area.  

Highly reactive gold carbene complex shines in emerald green

July 8, 2014 1:09 pm | News | Comments

With a chemical “trick”, scientists in Germany have succeeded in isolating a stable gold carbene complex. Experts have been proposing gold carbenes as essential short-lived intermediates in catalytic reactions, but they elude study because of their high reactivity. Chemist Prof. Dr. Bernd F. Straub and his team are the first to have created the basis for directly examining the otherwise unstable gold-carbon double bond.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading