Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Researchers grow carbon nanofibers using ambient air, without toxic ammonia

March 24, 2014 9:39 am | News | Comments

Vertically aligned carbon nanofibers (VACNFs) are a commonly manufactured material, but conventional techniques for creating them have relied on the use of ammonia gas, which is toxic. Though it not costly, it is also not free, either. Researchers in North Carolina have demonstrated that VACNFs can be manufactured using ambient air, making the manufacturing process safer and less expensive.

New use for an old troublemaker

March 24, 2014 9:04 am | News | Comments

An unwanted byproduct from a bygone method of glass production, the crystal devitrite could find a new use as an optical diffuser in medical laser treatments, communications systems and household lighting. For years, the properties of this material were not studied because it was considered as just a troublemaker in the glass-making process and needed to be eliminated.

Materials experts create spintronic thermoelectric power generators

March 21, 2014 2:18 pm | News | Comments

Imagine a computer so efficient that it can recycle its own waste heat to produce electricity. While such an idea may seem far-fetched today, significant progress has already been made to realize these devices. Researchers at the Univ. of Utah have fabricated spintronics-based thin film devices which do just that, converting even minute waste heat into useful electricity.

Advertisement

Lightweight construction materials achieve high stability

March 21, 2014 2:07 pm | News | Comments

Inspired by the framework structure of bones and the shell structure of bees’ honeycombs, researchers in Germany have developed microstructured lightweight construction materials of extremely high stability. Although its density is below that of water, the material’s stability relative to its weight exceeds that of massive materials, such as high-performance steel or aluminum. It was created using 3-D laser writing.

New semiconductor holds promise for 2-D physics, electronics

March 21, 2014 7:54 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

From super-lubricants, to solar cells, to the fledgling technology of valleytronics, there is much to be excited about with the discovery of a unique new 2-D semiconductor, rhenium disulfide, by researchers at Lawrence Berkeley National Laboratory’s Molecular Foundry. Rhenium disulfide, unlike molybdenum disulfide and other dichalcogenides, behaves electronically as if it were a 2-D monolayer even as a 3-D bulk material.

A layered nanostructure held together by DNA

March 20, 2014 12:40 pm | by David Lindley, Argonne National Laboratory | News | Comments

A new strategy for building nanoscale constructs uses the binding properties of complementary strands of DNA to attach nanoparticles to each other. A series of controlled steps builds up a layered thin-film nanostructure. Small-angle x-ray scattering analysis has revealed the precise form that the structures adopted, and points to ways of exercising still greater control over the final arrangement.

Rapid materials testing in 3-D

March 20, 2014 12:31 pm | News | Comments

Ultrasound is a proven technology in components testing, but until now evaluating the data has always been quite a time-consuming process. Researchers in Germany have recently optimized an ultrasonic testing solution that can test materials quickly and reliably with the help of 3-D images produced directly from test signals. The solution is analogous to medical computed tomography.

Scientists discover potential way to make graphene superconducting

March 20, 2014 8:02 am | News | Comments

Researchers in California have used a beam of intense ultraviolet light to look deep into the electronic structure of a material made of alternating layers of graphene and calcium. While it's been known for nearly a decade that this combined material is superconducting, the new study offers the first compelling evidence that the graphene layers are instrumental in this process. The finding could lead to super-efficient nanoelectronics.

Advertisement

Magnetic behavior discovery could advance nuclear fusion

March 19, 2014 1:53 pm | News | Comments

Inspired by the space physics behind solar flares and the aurora, a team of researchers from the Univ. of Michigan and Princeton Univ. has uncovered a new kind of magnetic behavior that could help make nuclear fusion reactions easier to start.

NIST chips help South Pole telescope find direct evidence of universe origin

March 19, 2014 9:16 am | News | Comments

Earlier this week, a team of U.S. cosmologists using the BICEP2 telescope at the South Pole said they have discovered the first direct evidence of the rapid inflation of the universe at the dawn of time. The finding was made possible, in part, by superconducting quantum interference devices (SQUIDs) designed at NIST.

New technique makes LEDs brighter, more resilient

March 19, 2014 8:24 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a new processing technique that makes light-emitting diodes (LEDs) brighter and more resilient by coating the semiconductor material gallium nitride (GaN) with a layer of phosphorus-derived acid.

Superconductivity in LEDs: Shedding new light on quantum physics

March 19, 2014 7:51 am | by Kim Luke, Univ. of Toronto | News | Comments

A team of Univ. of Toronto physicists led by Alex Hayat has proposed a novel and efficient way to leverage the strange quantum physics phenomenon known as entanglement.  The approach would involve combining light-emitting diodes (LEDs) with a superconductor to generate entangled photons and could open up a rich spectrum of new physics as well as devices for quantum technologies, including quantum computers and quantum communication.

Flexible carbon nanotube circuits are more reliable, power efficient

March 18, 2014 9:57 am | News | Comments

Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach they are trying involves designing circuits based on electronic fibers, known as carbon nanotubes, instead of rigid silicon chips. But reliability is essential.

Advertisement

Researchers devise stretchable antenna for wearable health monitoring

March 18, 2014 9:13 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a new, stretchable antenna that can be incorporated into wearable technologies, such as health monitoring devices. The researchers wanted to develop an antenna that could be stretched, rolled or twisted and always return to its original shape, because wearable systems can be subject to a variety of stresses as patients move around.

Antimony nanocrystals improved for batteries

March 18, 2014 8:21 am | by Peter Rüegg, ETH Zurich | News | Comments

Researchers have succeeded for the first time to produce uniform antimony nanocrystals. Tested as components of laboratory batteries, these are able to store a large number of both lithium and sodium ions. These nanomaterials operate with high rate and may eventually be used as alternative anode materials in future high-energy-density batteries.

Graphene light detector first to span infrared spectrum

March 18, 2014 8:04 am | by Kate McAlpine, Univ. of Michigan | News | Comments

The first room-temperature light detector that can sense the full infrared spectrum has the potential to put heat vision technology into a contact lens. Unlike comparable mid- and far-infrared detectors currently on the market, the detector developed by Univ. of Michigan engineering researchers doesn't need bulky cooling equipment to work.

Bright future for protein nanoprobes

March 17, 2014 11:39 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The term a “brighter future” might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at Lawrence Berkeley National Laboratory have discovered surprising new rules for creating ultra-bright light-emitting crystals that are less than 10 nm in diameter.

Researchers change coercivity of material by patterning surfaces

March 17, 2014 9:29 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have found a way to reduce the coercivity of nickel-ferrite (NFO) thin films by as much as 80% by patterning the surface of the material, opening the door to more energy efficient high-frequency electronics, such as sensors, microwave devices and antennas.

Data-mining for crystal “gold” at SLAC’s x-ray laser

March 17, 2014 9:21 am | by Glenn Roberts Jr., SLAC National Accelerator Laboratory | News | Comments

A new tool for analyzing mountains of data from SLAC National Accelerator Laboratory’s Linac Coherent Lightsource x-ray laser can produce high-quality images of important proteins using fewer samples. Scientists hope to use it to reveal the structures and functions of proteins that have proven elusive, as well as mine data from past experiments for new information.

Brighter inks, without pigment

March 17, 2014 7:57 am | by Manny Morone '14, Harvard Univ. | News | Comments

Researchers at the Harvard Univ. School of Engineering and Applied Sciences are giving man-made materials structural color. Producing structural color is not easy, though; it often requires a material’s molecules to be in a very specific crystalline pattern, like the natural structure of an opal, which reflects a wide array of colors.

Bionic plants

March 17, 2014 7:36 am | by Anne Trafton, MIT News Office | News | Comments

Plants have many valuable functions: They provide food and fuel, release the oxygen that we breathe and add beauty to our surroundings. Now, a team of Massachusetts Institute of Technology researchers wants to make plants even more useful by augmenting them with nanomaterials that could enhance their energy production and give them completely new functions, such as monitoring environmental pollutants.

Roomy cages built from DNA

March 14, 2014 11:48 am | News | Comments

Move over, nanotechnologists, and make room for the biggest of the small. Scientists at the Harvard's Wyss Institute have built a set of self-assembling DNA cages one-tenth as wide as a bacterium. The structures are some of the largest and most complex structures ever constructed solely from DNA.

Nanoscale optical switch breaks miniaturization barrier

March 14, 2014 10:15 am | by David Salisbury, Vanderbilt Univ. | News | Comments

An ultra-fast and ultra-small optical switch has been invented that could advance the day when photons replace electrons in the innards of consumer products ranging from cell phones to automobiles. The new optical device can turn on and off trillions of times per second and consists of tiny individual switches made of a metamaterial that uses vanadium dioxide.

Heat-based technique offers new way to count microscopic particles

March 13, 2014 9:09 am | News | Comments

Particle counters are used in a wide variety of industries. Researchers in North Carolina have developed a new thermal technique that counts and measures the size of particles, but is less expensive than light-based techniques. It can also be used on a wider array of materials than electricity-based techniques.

Quantum chaos in ultracold gas discovered

March 13, 2014 8:58 am | News | Comments

A research team in Austria has discovered that even simple systems, such as neutral atoms, can possess chaotic behavior. For the first time, researchers working at the Univ. of Innsbruck have been able to observe quantum chaos in the scattering behavior of ultracold atoms. This opens up new avenues to observe the interaction between quantum particles.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading