Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

No compromises: JILA’s short, flexible, reusable AFM probe

April 9, 2014 10:00 am | News | Comments

Researchers at JILA in Colorado have engineered a short, flexible, reusable probe for the atomic force microscope (AFM) that enables state-of-the-art precision and stability in picoscale force measurements. Shorter, softer and more agile than standard and recently enhanced AFM probes, the JILA tips will benefit nanotechnology and studies of folding and stretching in biomolecules such as proteins and DNA.

A new twist for better steel

April 9, 2014 9:23 am | News | Comments

In steel making, two desirable qualities, strength and ductility, tend to be at odds: Stronger steel is less ductile, and more ductile steel is not as strong. Engineers at Brown Univ., three Chinese universities, and the Chinese Academy of Sciences have shown that when cylinders of steel are twisted, their strength is improved without sacrificing ductility.

Domain walls in nanowires cleverly set in motion

April 8, 2014 12:02 pm | News | Comments

Using a new trick, researchers in Germany have been able to induce synchronous motion of the domain walls in a ferromagnetic nanowire. This is an important breakthrough for controlled movement of domain walls that allows permanent data to be stored using nanomagnets.  The advance involved applying a pulsed magnetic field that was perpendicular to the plane of the domain walls.

Advertisement

Hybrid technology could make Star Trek-style tricorder a reality

April 8, 2014 11:29 am | News | Comments

In the fictional Star-Trek universe, the tricorder was used to remotely scan patients for a diagnosis. A new device under development in the U.K. could perform that function through the use of chemical sensors on printed circuit boards. This would replace the current conventional diagnostic method, which is lengthy and is limited to single point measurements.

Even thinner solar cells through use of nanoparticles

April 8, 2014 11:16 am | News | Comments

New research shows that nanostructures could enable more light to be directed into the active layer of solar cells, increasing their efficiency. Prof. Martina Schmid of Freie Univ. in Berlin has measured how irregularly distributed silver particles influence the absorption of light. Nanoparticles interact with one another via their electromagnetic near-fields, so that local “hot spots” arise where light is concentrated especially strongly.

Scalable CVD process for making 2-D molybdenum diselenide

April 8, 2014 11:04 am | News | Comments

Nanoengineering researchers at Rice Univ. and Nanyang Technological Univ. in Singapore have unveiled a potentially scalable method for making one-atom-thick layers of molybdenum diselenide—a highly sought semiconductor that is similar to graphene but has better properties for making certain electronic devices like switchable transistors and light-emitting diodes.

Expanding particles to engineer defects

April 8, 2014 10:41 am | by Amanda Morris, Northwestern Univ. | News | Comments

Materials scientists have long known that introducing defects into 3-D materials can improve their mechanical and electronic properties. Now a new Northwestern Univ. study finds how defects affect 2-D crystalline structures, and the results hold information for designing new materials.

Graphene nanoribbons as electronic switches

April 8, 2014 9:29 am | News | Comments

A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices. The results, obtained by researchers in Argentina and Brazil, yield a clearer theoretical understanding of conductivity in graphene samples of finite size, which have applications in externally controlled electronic devices.

Advertisement

Scale model World War II craft takes flight with fuel from the sea

April 7, 2014 6:06 pm | News | Comments

Navy researchers have recently demonstrated sustained flight of a radio-controlled P-51 fighter replica fueled by a new gas-to-liquid process that uses seawater as carbon feedstock. The fuel is made using an innovative and proprietary electrolytic cation exchange module that separates gases from water at 92% efficiency. Catalysis converts the gases to liquid hydrocarbons.

New findings to help extend high efficiency solar cells’ lifetime

April 7, 2014 1:27 pm | by Kathleen Estes, Okinawa Institute of Science and Technology | News | Comments

Solid-state dye-sensitized solar cells have shown their potential in achieving high efficiency with a low cost of fabrication. Degradation of these cells shortens lifespan dramatically, however, and the causes of this are not well understood. After a detailed analysis, researchers in Okinawa have determined which material in the cells was degrading, and why.

Trees go high-tech: Process turns cellulose into energy storage devices

April 7, 2014 1:19 pm | News | Comments

Chemists have found that cellulose, the most abundant organic polymer on Earth, can be heated in a furnace in the presence of ammonia and turned into the building blocks for supercapacitors. The new process produces nitrogen-doped, nanoporous carbon membranes, which act as the electrodes of a supercapacitor. The only byproduct is methane, which could be used immediately as a fuel or for other purposes.

Rebar technique strengthens case for graphene

April 7, 2014 7:57 am | News | Comments

Carbon nanotubes are reinforcing bars that make 2-D graphene much easier to handle in a new hybrid material grown by researchers at Rice Univ. The Rice laboratory of chemist James Tour set nanotubes into graphene in a way that not only mimics how steel rebar is used in concrete but also preserves and even improves the electrical and mechanical qualities of both.

Self-assembled silver superlattices create molecular machines

April 7, 2014 7:34 am | by John Toon, Georgia Institute of Technology | News | Comments

A combined computational and experimental study of self-assembled silver-based structures known as superlattices has revealed an unusual and unexpected behavior: arrays of gear-like molecular-scale machines that rotate in unison when pressure is applied to them.

Advertisement

Tiny, wireless sensing device remotely alerts users to tell-tale vapors

April 4, 2014 2:52 pm | News | Comments

A research team has developed a small electronic sensing device that can alert users wirelessly to the presence of chemical vapors in the atmosphere.                              

Researchers probe the next generation of 2-D material

April 4, 2014 9:34 am | by Institute of Physics | News | Comments

As the properties and applications of graphene continue to be explored in laboratories all over the world, a growing number of researchers are looking beyond the one-atom-thick layer of carbon for alternative materials that exhibit similarly captivating properties.

Stick-on electronic patches monitor health

April 4, 2014 9:17 am | by Liz Ahlberg, University of Illinois at Urbana-Champaign | News | Comments

Engineers have demonstrated thin, soft stick-on patches that stretch and move with the skin and incorporate commercial, off-the-shelf chip-based electronics for sophisticated wireless health monitoring.                  

Scientist developing materials, electronics that dissolve when triggered

April 4, 2014 9:12 am | by Iowa State University | News | Comments

A medical device, once its job is done, could harmlessly melt away inside a person’s body. Or, a military device could collect and send its data and then dissolve away, leaving no trace of an intelligence mission. Or, an environmental sensor could collect climate information, then wash away in the rain. It’s a new way of looking at electronics.

Researchers make clothes from sugar

April 3, 2014 1:25 pm | News | Comments

In the future, the clothes you wear could be made from sugar. Researchers have discovered a new chemical process that can convert adipic acid directly from sugar.                         

An ultrathin collagen matrix biomaterial tool for 3-D microtissue engineering

April 3, 2014 9:53 am | by World Scientific | News | Comments

A novel ultrathin collagen matrix assembly allows for the unprecedented maintenance of liver cell morphology and function in a microscale "organ-on-a-chip" device that is one example of 3-D microtissue engineering.          

Researchers open path to finding rare, polarized metals

April 2, 2014 12:31 pm | Videos | Comments

Researchers are turning some of the basic tenets of chemistry and physics upside down to cut a trail toward the discovery of a new set of materials. They’re called “polar metals” and, according to many scientific principles, they probably shouldn’t exist.

Lab-grown muscle heals itself after animal implantation

April 2, 2014 12:07 pm | News | Comments

Biomedical engineers have grown living skeletal muscle that looks a lot like the real thing. It contracts powerfully and rapidly, integrates into mice quickly, and for the first time, demonstrates the ability to heal itself both inside the laboratory and inside an animal.

Strain can alter materials’ properties

April 2, 2014 9:18 am | by David Chandler, MIT | News | Comments

In the ongoing search for new materials for fuel cells, batteries, photovoltaics, separation membranes, and electronic devices, one newer approach involves applying and managing stresses within known materials to give them dramatically different properties. 

Shape helps catalyst extract energy from biomass

April 2, 2014 6:06 am | News | Comments

Biomass is a good alternative for fossil fuels, but converting biomass into useful chemicals and fuels is difficult in practice. The metal oxide CeO2 can help the process by activating water, but until recent research in the Netherlands, it was not clear in which form the reactivity of this catalyst was highest.

Good vibrations: Using light-heated water to deliver drugs

April 2, 2014 5:55 am | News | Comments

Pharmaceutical researchers in California, in collaboration with materials scientists, engineers and neurobiologists, have discovered a new mechanism for using near-infrared light to activate polymeric drug-delivering nanoparticles and other targeted therapeutic substances inside the body. This discovery represents a major innovation; up to now only a handful of strategies using light-triggered release from nanoparticles have been reported.

Carbon nanotubes grow in combustion flames

April 1, 2014 4:34 pm | News | Comments

Recent research in Japan, China and U.S. has revealed through theoretical simulations that the molecular mechanism of carbon nanotube growth and hydrocarbon combustion actually share many similarities. In studies using acetylene molecules as feedstock, a highly reactive molecular intermediate was found to play an important role in both processes forming CNTs and soot, which are two distinctively different structures.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading