Advertisement
Materials
Subscribe to Materials
View Sample

FREE Email Newsletter

Bubbling down: Discovery suggests surprising uses for common bubbles

August 20, 2014 8:29 am | by John Sullivan, Office of Engineering Communications, Princeton Univ. | News | Comments

Anyone who has ever had a glass of fizzy soda knows that bubbles can throw tiny particles into the air. But in a finding with wide industrial applications, Princeton Univ. researchers have demonstrated that the bursting bubbles push some particles down into the liquid as well.

Solar energy that doesn’t block the view

August 20, 2014 8:05 am | by Tom Oswald, Media Communications, Michigan State Univ. | News | Comments

A team of researchers at Michigan State Univ. has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through the window. It is called a transparent luminescent solar concentrator and can be used on buildings, cell phones and any other device that has a clear surface.

Supermaterials: Five reasons to embrace synthetic diamond

August 19, 2014 9:48 am | by Element Six | News | Comments

Synthetic diamond’s molecular structure makes it the world’s most versatile supermaterial. With greater hardness than all other materials, its strength is ideal for cutters used in oil and gas drilling, where it enables longer tool lifetime by minimizing wear, reduces downtime and drives down operating costs and carbon footprints.

Advertisement

Bacterial nanowires not what scientists thought they were

August 19, 2014 8:28 am | by Robert Perkins, Univ. of Southern California | Videos | Comments

For the past 10 years, scientists have been fascinated by a type of “electric bacteria” that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety of solid surfaces. A team led by scientists has now turned the study of these bacterial nanowires on its head, discovering that the key features in question are not pili as previously believed.

Promising ferroelectric materials suffer from unexpected electric polarizations

August 18, 2014 9:46 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics—remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data.

Moore quantum materials: Recipe for serendipity

August 18, 2014 7:44 am | by Mike Williams, Rice Univ. | News | Comments

Thanks to a $1.5 million innovation award from the Gordon and Betty Moore Foundation, Rice Univ. physicist Emilia Morosan is embarking on a five-year quest to cook up a few unique compounds that have never been synthesized or explored. Morosan is no ordinary cook; her pantry includes metals, oxides and sulfides, and her recipes produce superconductors and exotic magnets.

Molecular engineers record an electron’s quantum behavior

August 15, 2014 12:09 pm | by Jane Marie Andrew, Univ. of Chicago | News | Comments

A Univ. of Chicago-led team of researchers has developed a technique to record the quantum mechanical behavior of an individual electron contained within a nanoscale defect in diamond. Their technique uses ultrafast pulses of laser light, both to control the defect’s entire quantum state and observe how that single electron state changes over time.

Seven tiny grains captured by Stardust likely visitors from intersteller space

August 15, 2014 11:30 am | by Robert Sanders, Univ. of California, Berkeley | News | Comments

Since 2006, when NASA’s Stardust spacecraft delivered its aerogel and aluminum foil dust collectors back to Earth, a team of scientists has combed through them. They now report finding seven dust motes that probably came from outside our solar system, perhaps created in a supernova explosion and altered by eons of exposure to the extremes of space. They would be the first confirmed samples of contemporary interstellar dust.

Advertisement

The beetle’s white album

August 15, 2014 9:31 am | News | Comments

The physical properties of the ultra-white scales on certain species of beetle could be used to make whiter paper, plastics and paints, while using far less material than is used in current manufacturing methods. Current technology is not able to produce a coating as white as these beetles can in such a thin layer, and spectroscopic analyses are revealing how this colorization is achieved through a dense complex network of chitin.

Molecular shuttle speeds up hydrogen production

August 14, 2014 10:25 am | News | Comments

A research team in Europe has achieved significantly increase in the yield of hydrogen produced by the photocatalytic splitting of water. Their breakthrough in light-driven generation of hydrogen was achieved by using a novel molecular shuttle to enhance charge-carrier transport with semiconductor nanocrystals.

Chip-based platform could simplify measurements of single molecules

August 14, 2014 9:11 am | by Melissae Fellet, Univ. of California, Santa Cruz | News | Comments

Researchers at the Univ. of California, Santa Cruz have developed a new approach for studying single molecules and nanoparticles by combining electrical and optical measurements on an integrated chip-based platform. In a paper published in Nano Letters, the researchers reported using the device to distinguish viruses from similarly-sized nanoparticles with 100% fidelity.

Immune cells get cancer-fighting boost from nanomaterials

August 14, 2014 9:00 am | by Rase McCry, Yale Univ. | News | Comments

Scientists at Yale Univ. have developed a novel cancer immunotherapy that rapidly grows and enhances a patient’s immune cells outside the body using carbon nanotube-polymer composites; the immune cells can then be injected back into a patient’s blood to boost the immune response or fight cancer.

The mummy’s face: Solving an ancient mystery

August 14, 2014 8:51 am | News | Comments

The “Bearded Man, 170-180 A.D.” is a Roman-Egyptian portrait that adorned the sarcophagus sheltering his mummified remains. The details of who he was have been lost to time, but a microscopic sliver of painted wood could hold the keys to unraveling the first part of this centuries-old mystery. Figuring out what kind of pigment was used, and the exact materials used to create it, could help scientists unlock his identity.

Advertisement

Test reveals purity of graphene

August 14, 2014 8:02 am | by Mike Williams, Rice Univ. | News | Comments

Graphene may be tough, but those who handle it had better be tender. The environment surrounding the atom-thick carbon material can influence its electronic performance, according to researchers at Rice and Osaka universities who have come up with a simple way to spot contaminants.

Nanotech invention improves effectiveness of the “penicillin of cancer”

August 14, 2014 8:01 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

By combining magnetic nanoparticles with one of the most common and effective chemotherapy drugs, Argonne National Laboratory researchers have created a way to deliver anti-cancer drugs directly into the nucleus of cancer cells. They have created nano-sized bubbles, or “micelles,” that contain magnetic nanoparticles of iron oxide and cisplatin, a conventional chemotherapy drug also known as “the penicillin of cancer.”

New material could enhance fast, accurate DNA sequencing

August 14, 2014 7:41 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Gene-based personalized medicine has many possibilities for diagnosis and targeted therapy, but one big bottleneck: the expensive and time-consuming DNA sequencing process. Now, researchers at the Univ. of Illinois at Urbana-Champaign have found that nanopores in the material molybdenum disulfide (MoS2) could sequence DNA more accurately, quickly and inexpensively than anything yet available.

“Trojan horse” treatment could beat brain tumors

August 13, 2014 12:55 pm | News | Comments

A smart technology which involves smuggling gold nanoparticles into brain cancer cells has proven highly effective in lab-based tests in the U.K. The technique could eventually be used to treat glioblastoma multiforme, which is the most common and aggressive brain tumor in adults, and notoriously difficult to treat.

Custom-made nanotubes

August 13, 2014 12:39 pm | News | Comments

Researchers in Europe have succeeded for the first time in growing single-walled carbon nanotubes with only a single, prespecified structure. The nanotubes thereby have identical electronic properties. The decisive trick was producing the carbon nanotube from custom-made organic precursor molecules.

New material could be used for energy storage, conversion

August 13, 2014 11:50 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Lawrence Livermore National Laboratory researchers have made a material that is 10 times stronger and stiffer than traditional aerogels of the same density. This ultra-low-density, ultra-high surface area bulk material with an interconnected nanotubular makeup could be used in catalysis, energy storage and conversion, thermal insulation, shock energy absorption and high energy density physics.

Eco-friendly pre-fab nanoparticles could advance nanomanufacturing

August 13, 2014 11:21 am | by Janet Lathrop, UMass Amherst | News | Comments

A team of materials chemists, polymer scientists, device physicists and others at the Univ. of Massachusetts Amherst report a breakthrough technique for controlling molecular assembly of nanoparticles over multiple length scales that should allow faster, cheaper, more ecologically friendly manufacture of organic photovoltaics and other electronic devices.

New research to develop next-generation “race track memory” technology

August 13, 2014 9:02 am | News | Comments

Inspired by the discovery of “race track memory” by IBM researchers, scientists at the Univ. of California, Davis, with the support of the Semiconductor Research Corp., are investigating complex oxides that could be used to manipulate magnetic domain walls within the wires of semiconductor memory devices at nanoscale dimensions. This research may lead to devices that displace existing magnetic hard disk drive and solid state RAM solutions.

“Shape-shifting” material could help reconstruct faces

August 13, 2014 8:49 am | News | Comments

Injuries, birth defects (such as cleft palates) or surgery to remove a tumor can create gaps in bone that are too large to heal naturally. And when they occur in the head, face or jaw, these bone defects can dramatically alter a person’s appearance. Researchers have developed a “self-fitting” material that expands with warm salt water to precisely fill bone defects, and also acts as a scaffold for new bone growth.

Scientists discover the miracle of how geckos move, cling to ceilings

August 13, 2014 8:30 am | by David Stauth, Oregon State Univ. | News | Comments

Researchers at Oregon State Univ. have developed a model that explains how geckos, as well as spiders and some insects, can run up and down walls, cling to ceilings and seemingly defy gravity with such effortless grace. This ability is a remarkable mechanism in the toes of geckos that uses tiny, branched hairs called “seta” that can instantly turn their stickiness on and off, and even “unstick” their feet without using any energy.

Copper foam turns CO2 into useful chemicals

August 13, 2014 8:21 am | by Kevin Stacey, Brown Univ. | News | Comments

A catalyst made from a foamy form of copper has vastly different electrochemical properties from catalysts made with smooth copper in reactions involving carbon dioxide, a new study shows. The research, by scientists in Brown Univ.’s Center for the Capture and Conversion of CO2, suggests that copper foams could provide a new way of converting excess CO2 into useful industrial chemicals.

NC State partners with Bio2Electric on new catalyst technology

August 13, 2014 8:11 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

North Carolina State Univ. is part of a project team that is researching and developing new catalyst technology to produce the commercially important chemicals ethylene and propylene from natural gas. The project lead, Bio2Electric, LLC, dba EcoCatalytic Technologies, is collaborating with North Carolina State Univ., among other industry partners, to develop the new catalyst technologies.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading