Advertisement
Materials
Subscribe to Materials

The Lead

Impurity size affects performance of emerging superconductive material

April 18, 2014 8:45 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Research from North Carolina State Univ. finds that impurities can hurt performance, or possibly provide benefits, in a key superconductive material that is expected to find use in a host of applications, including future particle colliders. The size of the impurities determines whether they help or hinder the material’s performance.

Electrically controlled polymer changes its optical properties

April 18, 2014 8:28 am | News | Comments

An international team of chemists from Italy,...

High-temperature plasmonics eyed for solar, computer innovation

April 18, 2014 8:09 am | by Emil Venere, Purdue Univ. | News | Comments

New plasmonic metamaterials that operate at high temperatures could radically improve solar cell...

Surprising material could play role in saving energy

April 18, 2014 7:56 am | by Megan Fellman, Northwestern Univ. | News | Comments

One strategy for addressing the world’s energy crisis is to stop wasting so much energy when...

View Sample

FREE Email Newsletter

Breakthrough atomic-level observation uses super-resolution microscope

April 17, 2014 9:46 am | News | Comments

A research group in Japan has developed a new advanced system that combines a super-resolution microscope and a deposition chamber for growing oxide thin films. With this system, they successfully observed for the first time the growing of metal-oxide thin films at an atomic level on the surface of single-crystal strontium titanate.

Information storage for the next generation of plastic computers

April 17, 2014 9:41 am | by Gary Galluzzo, Univ. of Iowa | News | Comments

Although it is relatively cheap and easy to encode information in light for fiber optic transmission, storing information is most efficiently done using magnetism, which ensures information will survive for years without any additional power. But a new proposal by researchers would replace silicon used in these devices with plastic. Their solution converts magnetic information to light in a flexible plastic device.

Making new materials an atomic layer at a time

April 17, 2014 9:36 am | News | Comments

Researchers in Pennsylvania and Texas have shown the ability to grow high quality, single-layer materials one on top of the other using chemical vapor deposition. This highly scalable technique, often used in the semiconductor industry, can produce materials with unique properties that could be applied to solar cells, ultracapacitors for energy storage, or advanced transistors for energy efficient electronics, among many other applications.

Advertisement

Progress in the fight against quantum dissipation

April 17, 2014 7:50 am | by Eric Gershon, Yale Univ. | News | Comments

Scientists at Yale Univ. have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. High-quality quantum switches are essential for the development of quantum computers and the quantum Internet.

Scientists capture ultrafast snapshots of light-driven superconductivity

April 16, 2014 2:34 pm | News | Comments

Carefully timed pairs of laser pulses at the Linac Coherent Light Source have been used to trigger superconductivity in a promising copper-oxide material and immediately take x-ray snapshots of its atomic and electronic structure as superconductivity emerged. The results of this effort have pinned down a major factor behind the appearance of superconductivity, and it hinges around “stripes” of increase electrical charge.

New barcode could make counterfeiters’ lives more difficult

April 16, 2014 11:16 am | News | Comments

Counterfeiters, beware! Scientists are reporting the development of a new type of inexpensive barcode that, when added to documents or currency, could foil attempts at making forgeries. Although the tags are easy for researchers to make, they still require ingredients you can’t exactly find at the local hardware store.

Relieving electric vehicle range anxiety with improved batteries

April 16, 2014 8:15 am | by Frances White, PNNL | News | Comments

Electric vehicles could travel farther and more renewable energy could be stored with lithium-sulfur batteries that use a unique powdery nanomaterial. Researchers added the powder, a kind of nanomaterial called a metal organic framework, to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.

Relieving electric vehicle range anxiety with improved batteries

April 15, 2014 3:29 pm | News | Comments

The chemistry of lithium-ion batteries limits how much energy they can store, and one promising solution is the lithium-sulfur battery, which can hold as much as four times more energy per mass. However, problematic polysulfides usually cause lithium-sulfur batteries to fail after a few charges. Researchers at Pacific Northwest National Laboratory, however, have developed a new powdery nanomaterial that could solve the issue.

Advertisement

Nanocrystalline cellulose modified into an efficient viral inhibitor

April 15, 2014 11:38 am | News | Comments

Researchers in Finland have succeeded in creating a surface on nano-sized cellulose crystals that imitates a biological structure. The surface adsorbs viruses and disables them, preventing their spread into cells. The results could prove useful in the development of antiviral ointments and surfaces.

Engineers develop new materials for hydrogen storage

April 15, 2014 9:43 am | News | Comments

Researchers in California have created, for the first time, compounds made from mixtures of calcium hexaboride, strontium and barium hexaboride. They also demonstrated that these ceramic materials could be manufactured using a simple, low-cost manufacturing method known as combustion synthesis.

Nano shake-up: Nanocarriers fluctuate in size and shape

April 15, 2014 9:26 am | by Diane Kukich, Univ. of Delaware | News | Comments

Nanotechnology has unlocked new pathways for targeted drug delivery, including the use of nanocarriers that can transport cargoes of small-molecule therapeutics to specific locations in the body. Researchers have recently demonstrated that processing can have significant influence on the size of nanocarriers for targeted drug delivery. It was previously assumed that once a nanocarrier is created, it maintains its size and shape anywhere.

The Benefits of Single-particle ICP MS for the Characterization of Engineered Nanomaterials

April 15, 2014 8:41 am | by Rob Thomas and Chady Stephan | Articles | Comments

The unique properties of engineered nanoparticles have created intense interest in their environmental behavior. Due to the increased use of nanotechnology in consumer products, industrial applications and health care technology, nanoparticles are more likely to enter the environment. For this reason, it’s not only important to know the type, size and distribution of nanoparticles, but it’s also crucial to understand their impact.

Scientists open door to better solar cells, superconductors and hard-drives

April 14, 2014 1:05 pm | News | Comments

Recent research using free-electron laser sources has enhanced the understanding of the interface of two materials, where completely new properties can arise. For instance, two insulators and non-magnetic materials can become metallic and magnetic at their interface. The breakthrough was the discovery of a discrepancy in the number of charge carriers of two promising electronic materials.

Advertisement

Research finds “tunable” semiconductors will allow better detectors, solar cells

April 14, 2014 12:53 pm | by Ann Claycombe, Georgia State Univ. | News | Comments

One of the great problems in physics is the detection of electromagnetic radiation—that is, light—which lies outside the small range of wavelengths that the human eye can see. Think x-rays, for example, or radio waves. Now, researchers have discovered a way to use existing semiconductors to detect a far wider range of light than is now possible, well into the infrared range.

Shiny quantum dots brighten future of solar cells

April 14, 2014 10:42 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum dot work by Los Alamos National Laboratory researchers in collaboration with scientists from Univ. of Milano-Bicocca, Italy. Their project demonstrates that superior light-emitting properties of quantum dots can be applied in solar energy by helping more efficiently harvest sunlight.

Scientists gain new insight into mysterious electronic phenomenon

April 14, 2014 7:54 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

For more than a quarter of a century, high-temperature superconductors have perplexed scientists who seek to understand the physical phenomena responsible for their unique properties. Thanks to a new study by Argonne National Laboratory, researchers have identified and solved at least one paradox in the behavior of high-temperature superconductors.

A molecular approach to solar power

April 14, 2014 7:38 am | by David L. Chandler, MIT News Office | News | Comments

It’s an obvious truism, but one that may soon be outdated: The problem with solar power is that sometimes the sun doesn’t shine. Now a team at Massachusetts Institute of Technology and Harvard Univ. has come up with an ingenious workaround: a material that can absorb the sun’s heat and store that energy in chemical form, ready to be released again on demand.

Glasses strong as steel

April 14, 2014 7:29 am | by Eric Gershon, Yale Univ. | News | Comments

Scientists at Yale Univ. have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel. Using traditional methods, it usually takes a full day to identify a single metal alloy appropriate for making BMGs.

New physical phenomenon on nanowires seen for the first time

April 11, 2014 1:06 pm | News | Comments

For optical communication to happen, it is essential to convert electrical information into light, using emitters. On the other end of the optical link, one needs to translate the light stream into electrical signals using detectors. Current technologies use different materials to realize these two distinct functions, but this might soon change thanks to a new discovery by researchers at IBM.

Sunlight generates hydrogen in new porous silicon

April 10, 2014 11:20 am | by A'ndrea Elyse Messer, Penn State Univ. | News | Comments

Porous silicon manufactured in a bottom up procedure using solar energy can be used to generate hydrogen from water, according to a team of Penn State Univ. mechanical engineers, who also see applications for batteries, biosensors and optical electronics as outlets for this new material.

Tiny particles may pose big risk

April 10, 2014 11:05 am | by Anne Trafton, MIT News Office | News | Comments

Thousands of consumer products contain nanoparticles added by manufacturers to improve texture, kill microbes or enhance shelf life, among other purposes. However, several studies have shown that some of these engineered nanoparticles can be toxic to cells. A new study from Massachusetts Institute of Technology and the Harvard School of Public Health suggests that certain nanoparticles can also harm DNA.

Promising agents burst through superbug defenses to fight antibiotic resistance

April 10, 2014 9:02 am | News | Comments

In the fight against “superbugs,” scientists have discovered a class of agents that can make some of the most notorious strains vulnerable to the same antibiotics that they once handily shrugged off. Recently discovered metallopolymers, when paired with the same antibiotics MRSA normally dispatches with ease, helped evade the bacteria’s defensive enzymes and destroyed its protective walls, causing the bacteria to burst.

Scientists discover way to make ethanol without corn, other plants

April 10, 2014 9:00 am | by Mark Shwartz, Stanford Univ. | News | Comments

Stanford Univ. scientists have found a new, highly efficient way to produce liquid ethanol from carbon monoxide gas. This promising discovery could provide an eco-friendly alternative to conventional ethanol production from corn and other crops, say the scientists. Their results are published online in Nature.

Electromagnetically induced transparency in a silicon nitride optomechanical crystal

April 10, 2014 8:45 am | News | Comments

Researchers from the NIST Center for Nanoscale Science and Technology have observed electromagnetically induced transparency at room temperature and atmospheric pressure in a silicon nitride optomechanical system. This work highlights the potential of silicon nitride as a material for producing integrated devices in which mechanical vibrations can be used to manipulate and modify optical signals.

Emerging research suggests a new paradigm for “unconventional superconductors”

April 10, 2014 8:25 am | News | Comments

An international team of scientists has reported the first experimental observation of the quantum critical point (QCP) in the extensively studied “unconventional superconductor” TiSe2, finding that it does not reside as predicted within the superconducting dome of the phase diagram, but rather at a full GPa higher in pressure.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading