Advertisement
Materials
Subscribe to Materials

The Lead

Fundamental observation of spin-controlled electrical conduction in metals

July 7, 2015 8:00 am | by Max Planck Institute for Polymer Research | News | Comments

Modern magnetic memories, such as hard drives installed in almost every computer, can store a very large amount of information thanks to very tiny, nanoscale magnetic sensors used for memory readout. The operation of these magnetic sensors, called the spin-valves, is based on the effect of giant magnetoresistance (GMR), for which its inventors Albert Fert and Peter Gruenberg were awarded a Nobel Prize in Physics in 2007.

Aluminum clusters shut down molecular fuel factory

July 6, 2015 4:25 pm | by Eric Francavilla, PNNL | News | Comments

Despite decades of industrial use, the exact chemical transformations occurring within zeolites...

Surfing a wake of light

July 6, 2015 12:30 pm | by Leah Burrows | News | Comments

When a duck paddles across a pond or a supersonic plane flies through the sky, it leaves a wake...

New tech using silver may hold key to electronics advances

July 6, 2015 9:40 am | by David Stauth, Oregon State Univ. | News | Comments

Engineers at Oregon State Univ. have invented a way to fabricate silver, a highly conductive...

View Sample

FREE Email Newsletter

Discovery of nanotubes offers new clues about cell-to-cell communication

July 6, 2015 8:27 am | by Ian Demsky, Univ. of Michigan | News | Comments

When it comes to communicating with each other, some cells may be more "old school" than was previously thought. Certain types of stem cells use microscopic, thread-like nanotubes to communicate with neighboring cells, like a landline phone connection, rather than sending a broadcast signal, researchers have discovered.

Chemists design quantum dot spectrometer

July 6, 2015 8:09 am | by Anne Trafton, MIT News Office | News | Comments

Instruments that measure the properties of light, known as spectrometers, are widely used in physical, chemical and biological research. These devices are usually too large to be portable, but Massachusetts Institute of Technology scientists have now shown they can create spectrometers small enough to fit inside a smartphone camera, using tiny semiconductor nanoparticles called quantum dots.

Controlling liquids at micro and nano scales

July 2, 2015 10:47 am | by Northumbria University | News | Comments

From targeted drug delivery to the self-assembly of nano robots, new research is using super-sized atoms to reveal the behavior of liquids in microscopic channels. Using the already established “lab on a chip” device, which can perform complex laboratory functions in a tiny space, the team has unveiled how fluids behave under extreme confinement by using micron-sized particles known as colloids to act as oversized atoms.

Advertisement
Structure of the cadmium chloride nanocrystal

Engineering the world’s smallest nanocrystal

July 2, 2015 10:24 am | by RIKEN | News | Comments

In the natural world, proteins use the process of biomineralization to incorporate metallic elements into tissues, using it to create diverse materials such as seashells, teeth, and bones. However, the way proteins actually do this is not well understood. Now, scientists have used an artificially designed protein to create a cadmium chloride nanocrystal—the smallest crystal reported so far—sandwiched between two copies of the protein.

Magnetic skyrmions

Evidence for stable room-temperature skyrmions found

July 2, 2015 10:17 am | by RIKEN | News | Comments

Researchers have identified a class of materials that displays clear evidence for stable skyrmions at room temperature and above, paving the way for the development of useful spintronics devices. Magnetic skyrmions are tiny, nanometer-sized magnetic-spin vortices that emerge in magnetic materials. Because they are so small, they could potentially be used as extremely dense memory devices.

Focused energy of lasers breaks microscopic adhesion

July 2, 2015 8:59 am | by NSF | News | Comments

When small objects get stuck to you, a vacuum or lint roller can help remove them. But small, clingy objects are a serious problem in the growing field of nanomanufacturing. So what do engineers use when they have to build circuits that will fit on a piece of confetti? Researchers supported by the National Science Foundation (NSF) have a solution: lasers.

Improving insulation materials, down to wetting crossed fibres

July 2, 2015 8:52 am | by Springer | News | Comments

Sandcastles are a prime example of how adding a small amount of liquid to a granular material changes its characteristics. But understanding the effect of a liquid wetting randomly oriented fibers in a fibrous medium remains a mystery. Now, scientists have demonstrated that the spreading of the liquid is controlled by three key parameters: the amount of liquid on the fibers, the fibres’ orientation and the minimum distance between them. 

This is a branch of Dracaena marginata. Courtesy of Linnea Hesse

The inside story: MRI imaging shows how plants can inspire new engineering materials

July 1, 2015 10:39 am | by Society for Experimental Biology | News | Comments

3-D imaging of plant branching structures is allowing researchers to see how exactly their internal tissues respond under stress, giving new insights into the design of potential new engineering materials, such as those used in aircraft. Researchers have developed a new method to visualize the junction between branches and stems. The method uses MRI to study how vascular tissue within the ramifications deforms under stress and strain.

Advertisement
A fresh CNF based microwave silicon transistor chip. After 3 weeks of putting it in a woodpile, the chip was partially degraded with the help of fungi. Courtesy of Jung-Hun Seo, Shaoqin Gong and Zhenqiang Ma/University of Wisconsin-Madison

Biodegradable, flexible silicon transistors developed

July 1, 2015 10:26 am | by Zhengzheng Zhang, American Institute of Physics | News | Comments

Researchers have come up with a new solution to alleviate the environmental burden of discarded electronics. They have demonstrated the feasibility of making microwave biodegradable thin-film transistors from a transparent, flexible biodegradable substrate made from inexpensive wood, called cellulose nanofibrillated fiber (CNF). This work opens the door for green, low-cost, portable electronic devices in future.

New method can make cheaper solar energy storage

July 1, 2015 7:46 am | by EPFL | News | Comments

Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems. EPFL scientists have now developed a simple, unconventional method to fabricate high-quality, efficient solar panels for direct solar hydrogen production with low cost.

Chemists characterize 3-D macroporous hydrogels

July 1, 2015 7:00 am | by Carnegie Mellon University | News | Comments

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels -- materials that hold great promise for developing "smart" responsive materials that can be used for catalysts, chemical detectors, tissue engineering scaffolds and absorbents for carbon capture.

Growing cell membranes are seen in this time lapse sequence (numbers correspond to minutes of duration). Courtesy of Michael Hardy, UC San Diego

Scientists create synthetic membranes that grow like living cells

June 30, 2015 11:34 am | by UC San Diego | News | Comments

Chemists and biologists have succeeded in designing and synthesizing an artificial cell membrane capable of sustaining continual growth, just like a living cell. Their achievement will allow scientists to more accurately replicate the behavior of living cell membranes, which until now have been modeled only by synthetic cell membranes without the ability to add new phospholipids.

By focusing lasers onto silicon buried under a clear layer of silicon dioxide, the group has perfected a way to reliably blast tiny cavities in the solid silicon. This creates extremely high pressure around the explosion site and forms the new phases.

Making new materials with micro-explosions

June 30, 2015 10:49 am | by Australian National University | News | Comments

Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material. The new technique could lead to the simple creation and manufacture of superconductors or high-efficiency solar cells and light sensors. By focusing lasers onto silicon buried under a clear layer of silicon dioxide, the group has perfected a way to reliably blast tiny cavities in the solid silicon.

Advertisement

Startup brings nonstick coating to consumer goods packaging

June 30, 2015 8:44 am | by Rob Matheson, MIT News Office | News | Comments

The days of wasting condiments — and other products — that stick stubbornly to the sides of their bottles may be gone, thanks to MIT spinout LiquiGlide, which has licensed its nonstick coating to a major consumer-goods company.  

New nanogenerator harvests power from rolling tires

June 30, 2015 8:40 am | by University of Wisconsin-Madison | News | Comments

A group of University of Wisconsin-Madison engineers and a collaborator from China have developed a nanogenerator that harvests energy from a car's rolling tire friction.

Physicists shatter stubborn mystery of how glass forms

June 30, 2015 8:37 am | by University of Waterloo | News | Comments

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists for decades.

Dr. Sahmaran tests the performance of healed ECC specimen under mechanical loading.

Concrete cracks heal themselves

June 29, 2015 10:46 am | by American Concrete Institute (ACI) | News | Comments

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that it can self-heal its own small wounds (cracks) as an intrinsic characteristic. However, cracks do not heal easily in conventional concrete due to its rather brittle nature...

To a stunned Graphene Week 2015 audience, Robert Roelver of Stuttgart-based engineering firm Bosch reported that company researchers, together with scientists at the Max-Planck Institute for Solid State Research, have created a graphene-based magnetic sen

Bosch announces breakthrough in graphene sensor technology

June 29, 2015 10:35 am | by Francis Sedgemore, Graphene Flagship | News | Comments

Graphene Week 2015 was awash with outstanding research results, but one presentation created quite a stir. To a stunned audience, Robert Roelver of Stuttgart-based engineering firm Bosch reported that company researchers, together with scientists at the Max-Planck Institute for Solid State Research, have created a graphene-based magnetic sensor 100 times more sensitive than an equivalent device based on silicon.

Eco-friendly oil spill solution developed

June 29, 2015 10:00 am | by City College of New York | News | Comments

City College of New York researchers led by chemist George John have developed an eco-friendly biodegradable green "herding" agent that can be used to clean up light crude oil spills on water. Derived from the plant-based small molecule phytol abundant in the marine environment, the new substance would potentially replace chemical herders currently in use.

Major step for implantable drug-delivery device

June 29, 2015 8:56 am | by Rob Matheson, MIT News Office | News | Comments

An implantable, microchip-based device may soon replace the injections and pills now needed to treat chronic diseases: Earlier this month, MIT spinout Microchips Biotech partnered with a pharmaceutical giant to commercialize its wirelessly controlled, implantable, microchip-based devices that store and release drugs inside the body over many years.

The peaks and valleys of silicon

June 29, 2015 8:52 am | by University of Southern California | News | Comments

When the new iPhone came out, customers complained that it could be bent — but what if you could roll up your too big 6 Plus to actually fit in your pocket? That technology might be available sooner than you think, based on the work of USC Viterbi engineers.

Making a better semiconductor

June 29, 2015 8:44 am | by Michigan State University | News | Comments

Research led by Michigan State University could someday lead to the development of new and improved semiconductors. In a paper, scientists detailed how they developed a method to change the electronic properties of materials in a way that will more easily allow an electrical current to pass through.

Helium “balloons” offer new path to control complex materials

June 26, 2015 2:00 pm | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Researchers at Oak Ridge National Laboratory have developed a new method to manipulate a wide range of materials and their behavior using only a handful of helium ions. The team’s technique advances the understanding and use of complex oxide materials that boast unusual properties such as superconductivity and colossal magnetoresistance but are notoriously difficult to control.

Making clothes out of gelatin could reduce agricultural waste

June 26, 2015 10:30 am | by American Chemical Society | News | Comments

From gummy bears to silky mousses, gelatin is essential for making some of our favorite sweets. Now scientists are exploring another use for the common food ingredient: spinning it into yarn so it can be made into clothing. And because gelatin comes from livestock by-products, the new technique would provide an additional use for agricultural leftovers. The report appears in Biomacromolecules.

All-plastic solar cell could help power future flexible electronics

June 26, 2015 7:06 am | by American Chemical Society | News | Comments

If you picture a solar panel, it’s most likely dark blue or black, and rigid and flat. Now imagine one that’s semi-transparent, ultra-thin and bendable. Scientists are closing in on making the latter version a reality. They report in ACS Applied Materials & Interfaces the development of a see-through, bendable solar cell made entirely out of plastic. The device could help power the coming wave of flexible electronics.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading