Advertisement
Materials
Subscribe to Materials

The Lead

Moving molecule writes letters

February 27, 2015 11:55 am | by Andreas Battenberg, TUM | News | Comments

On the search for high-performance materials for applications such as gas storage, thermal insulators or dynamic nanosystems it’s essential to understand the thermal behavior of matter down to the molecular level. Classical thermodynamics average over time and over a large number of molecules. Within a 3-D space single molecules can adopt an almost infinite number of states, making the assessment of individual species nearly impossible.

Electrochemical “fingers” unlock battery’s inner potential

February 27, 2015 8:18 am | by Justin Eure, Brookhaven National Laboratory | Videos | Comments

Lithium-ion batteries unleash electricity as electrochemical reactions spread through active...

Research predicts when, how materials will act

February 26, 2015 12:09 pm | by Kathleen Haughney, Florida State Univ. | News | Comments

In science, it’s commonly known that materials can change in a number of ways when subjected to...

Building blocks of the future defy logic

February 26, 2015 11:58 am | by Cassi Camilleri, Univ. of Malta | News | Comments

Wake up in the morning and stretch; your midsection narrows. Pull on a piece of plastic at...

View Sample

FREE Email Newsletter

A mollusk of a different stripe

February 26, 2015 10:59 am | by Jennifer Chu, MIT News Office | Videos | Comments

The blue-rayed limpet is a tiny mollusk that lives in kelp beds along the coasts of Norway, Iceland, the U.K., Portugal and the Canary Islands. These diminutive organisms might escape notice entirely, if not for a very conspicuous feature: bright blue dotted lines that run in parallel along the length of their translucent shells. Depending on the angle at which light hits, a limpet’s shell can flash brilliantly even in murky water.

Warming up the world of superconductors

February 26, 2015 8:50 am | by Robert Perkins, Univ. of Southern California | News | Comments

A superconductor that works at room temperature was long thought impossible, but scientists at the Univ. of Southern California may have discovered a family of materials that could make it reality. The team found that aluminum "superatoms" appear to form Cooper pairs of electrons at temperatures around 100 K. Though 100 K is still pretty chilly, this is an increase compared to bulk aluminum metal.

X-ray microscope for nanoscale imaging

February 26, 2015 8:29 am | by Chelsea Whyte, Brookhaven National Laboratory | News | Comments

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright x-rays from the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory.

Advertisement

A simple way to make and reconfigure complex emulsions

February 26, 2015 8:00 am | by Anne Trafton, MIT News Office | Videos | Comments

Massachusetts Institute of Technology researchers have devised a new way to make complex liquid mixtures, known as emulsions, that could have many applications in drug delivery, sensing, cleaning up pollutants and performing chemical reactions. Many drugs, vaccines, cosmetics and lotions are emulsions, in which tiny droplets of one liquid are suspended in another liquid.

New “knobs” can dial in control of materials

February 25, 2015 9:52 am | by Anne Ju, Cornell Univ. | News | Comments

Designing or exploring new materials is all about controlling their properties. In a new study, Cornell Univ. scientists offer insight on how different “knobs” can change material properties in ways that were previously unexplored or misunderstood.

Boosting carbon’s stability for better lithium-air batteries

February 25, 2015 9:15 am | by Ed Hayward, Boston College | News | Comments

To power a car so it can travel hundreds of miles at a time, lithium-ion batteries of the future are going to have to hold more energy without growing too big in size. That's one of the dilemmas confronting efforts to power cars through rechargeable battery technologies. In order to hold enough energy to enable a car trip of 300 to 500 miles before recharging, current lithium-ion batteries become too big or too expensive.

Graphene shows potential as anticancer therapeutic strategy

February 25, 2015 8:11 am | by Jamie Brown, Univ. of Manchester | News | Comments

Univ. of Manchester scientists have used graphene to target and neutralize cancer stem cells while not harming other cells. This new development opens up the possibility of preventing or treating a broad range of cancers, using a non-toxic material.

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution

February 24, 2015 11:19 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Newly developed tiny antennas, likened to spotlights on the nanoscale, offer the potential to measure food safety, identify pollutants in the air and even quickly diagnose and treat cancer. The new antennas are cubic in shape. They do a better job than previous spherical ones at directing an ultra-narrow beam of light where it is needed, with little or no loss due to heating and scattering.

Advertisement

Ultra-thin nanowires can trap electron “twisters”

February 24, 2015 11:11 am | by Phil Sneiderman, Johns Hopkins Univ. | News | Comments

Superconductor materials are prized for their ability to carry an electric current without resistance, but this valuable trait can be crippled or lost when electrons swirl into tiny tornado-like formations called vortices. These disruptive mini-twisters often form in the presence of magnetic fields, such as those produced by electric motors.

Building tailor-made DNA nanotubes step-by-step

February 24, 2015 8:10 am | by McGill Univ. | News | Comments

Researchers at McGill Univ. have developed a new, low-cost method to build DNA nanotubes block-by-block, a breakthrough that could help pave the way for scaffolds made from DNA strands to be used in applications such as optical and electronic devices or smart drug delivery systems. Many researchers, including the McGill team, have previously constructed nanotubes using a method that relies on spontaneous assembly of DNA in solution.

Simulating superconducting materials with ultracold atoms

February 23, 2015 11:46 am | by Jade Boyd, Rice Univ. | News | Comments

Using ultracold atoms as a stand-in for electrons, a Rice Univ.-based team of physicists has simulated superconducting materials and made headway on a problem that's vexed physicists for nearly three decades. The research was carried out by an international team of experimental and theoretical physicists and appears online in Nature. The work could open up a new realm of unexplored science.

Researchers identify keys to improved polymer solar cells

February 23, 2015 8:38 am | by Bill Kisliuk, Univ. of California, Los Angeles | News | Comments

Paving the way for lighter and more flexible solar devices, Univ. of California, Los Angeles researchers have identified the key principles for developing high-efficiency polymer solar cells. Today’s commercially produced solar panels use silicon cells to efficiently convert sunlight to energy. But silicon panels are too heavy to be used for energy-producing coatings for buildings and cars, or flexible and portable power supplies.

New catalyst to create chemical building blocks from biomass

February 23, 2015 7:36 am | by Univ. of Tokyo | News | Comments

Univ. of Tokyo researchers have developed a novel selective catalyst that allows the creation of several basic chemicals from biomass instead of petroleum. This discovery may lead to the use of plant biomass as a basic feedstock for the chemical industry. The new catalyst enables selective cleaving (hydrogenolysis) of carbon-oxygen (C-O) single bonds in phenols and aryl methyl ethers, two of the main components of lignin.

Advertisement

Semiconductor works better when hitched to graphene

February 20, 2015 8:41 am | by SLAC Office of Communications | News | Comments

Graphene shows great promise for future electronics, advanced solar cells, protective coatings and other uses, and combining it with other materials could extend its range even further. Experiments at the SLAC National Accelerator Laboratory looked at the properties of materials that combine graphene with a common type of semiconducting polymer.

Fibers made by transforming materials

February 20, 2015 8:26 am | by David L. Chandler, MIT News Office | News | Comments

Scientists have known how to draw thin fibers from bulk materials for decades. But a new approach to that old method, developed by researchers at Massachusetts Institute of Technology, could lead to a whole new way of making high-quality fiber-based electronic devices. The idea grew out of a long-term research effort to develop multifunctional fibers that incorporate different materials into a single long functional strand.

New technique developed for making graphene competitor, molybdenum disulphide

February 20, 2015 7:59 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Graphene is often touted as a replacement for silicon in electronic devices due to its extremely high conductivity and unbeatable thinness. But graphene isn’t the only 2-D material that could play such a role. Univ. of Pennsylvania researchers have made an advance in manufacturing one such material, molybdenum disulphide.

Perfect colors, captured with ultra-thin lens

February 20, 2015 7:50 am | by Caroline Perry, Harvard Univ. | News | Comments

Most lenses are, by definition, curved. After all, they are named for their resemblance to lentils, and a glass lens made flat is just a window with no special powers. But a new type of lens created at the Harvard School of Engineering and Applied Sciences turns conventional optics on its head.

Semiconductor Moves Spintronics Toward Reality

February 19, 2015 2:00 pm | by Univ. of Michigan | News | Comments

A new semiconductor compound is bringing fresh momentum to the field of spintronics, an emerging breed of computing device that may lead to smaller, faster, less power-hungry electronics. Created from a unique low-symmetry crystal structure, the compound is the first to build spintronic properties into a material that's stable at room temperature and easily tailored to a variety of applications.

Shape-shifting groups of nanorods release heat differently

February 19, 2015 9:11 am | by Justin H.S. Breaux, Argonne National Laboratory | News | Comments

Researchers have revealed previously unobserved behaviors that show how details of the transfer of heat at the nanoscale cause nanoparticles to change shape in ensembles.

Researchers develop a cost-effective, efficient rival for platinum

February 18, 2015 10:39 am | by Aalto Univ. | News | Comments

Researchers succeeded in creating an electrocatalyst that is needed for storing electric energy made of carbon and iron. A challenge that comes with the increased use of renewable energy is how to store electric energy. Platinum has traditionally been used as the electrocatalyst in electrolyzers that store electric energy as chemical compounds.

Paper-like material could boost electric vehicle batteries

February 18, 2015 8:58 am | by Sean Nealon, University of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have developed a novel paper-like material for lithium-ion batteries. It has the potential to boost by several times the specific energy, or amount of energy that can be delivered per unit weight of the battery. This paper-like material is composed of sponge-like silicon nanofibers more than 100 times thinner than human hair.

Novel crumpling method takes flat graphene from 2-D to 3-D

February 18, 2015 7:54 am | by Rick Kubetz, Univ. of Illinois, Urbana-Champaign | News | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have developed a unique single-step process to achieve 3-D texturing of graphene and graphite. Using a commercially available thermally activated shape-memory polymer substrate, this 3-D texturing, or "crumpling," allows for increased surface area and opens the doors to expanded capabilities for electronics and biomaterials.

New spin on spintronics

February 17, 2015 11:18 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

A team of researchers from the Univ. of Michigan and Western Michigan Univ. is exploring new materials that could yield higher computational speeds and lower power consumption, even in harsh environments. Most modern electronic circuitry relies on controlling electronic charge within a circuit, but this control can easily be disrupted in the presence of radiation, interrupting information processing.

Novel solid-state nanomaterial platform enables terahertz photonics

February 17, 2015 11:11 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Compact, sensitive and fast nanodetectors are considered to be somewhat of a "Holy Grail" sought by many researchers around the world. And now a team of scientists in Italy and France has been inspired by nanomaterials and has created a novel solid-state technology platform that opens the door to the use of terahertz photonics in a wide range of applications.

The future of electronics could lie in material from the past

February 17, 2015 8:31 am | by Pam Frost Gorder, The Ohio State Univ. | News | Comments

The future of electronics could lie in a material from its past, as researchers from The Ohio State Univ. work to turn germanium, the material of 1940s transistors, into a potential replacement for silicon. At the American Association for the Advancement of Science meeting, Asst. Prof. of Chemistry Joshua Goldberger reported progress in developing a form of germanium called germanane.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading