Advertisement
Manufacturing
Subscribe to Manufacturing
View Sample

FREE Email Newsletter

New synthesis method generates functionalized carbon nanolayers

June 25, 2014 8:10 am | News | Comments

An international team has developed an elegant method for producing self-organized and functionalized carbon nanolayers and equipping them chemically with a range of functions. The effort depended on the development of a special compound, the molecules of which were aligned perfectly in parallel to each other in a single self-organized layer, like the bristles on a brush.

Collaborative learning for robots

June 25, 2014 7:54 am | by Larry Hardesty, MIT News Office | News | Comments

Machine learning, in which computers learn new skills by looking for patterns in training data, is the basis of most recent advances in artificial intelligence, from voice-recognition systems to self-parking cars. It’s also the technique that autonomous robots typically use to build models of their environments. That type of model-building gets complicated, however, in cases in which clusters of robots work as teams.

Woman or machine? New robots look creepily human

June 24, 2014 9:46 am | by Yuri Kageyama, AP Business Writer | News | Comments

New robot guides at a Tokyo museum look so eerily human and speak so smoothly they almost outdo people. The two life-size robots, which have silicon skin, artificial muscles, and can speak in a variety of voices, will be on display starting Wednesday, allowing the public to interact with them extensively.

Advertisement

Super-stretchable yarn is made of graphene

June 23, 2014 12:30 pm | News | Comments

According to researchers, a simple, scalable method of making strong, stretchable graphene oxide fibers that are easily scrolled into yarns and have strengths approaching that of Kevlar is possible. An international collaboration has recently produced graphene oxide yarn fibers much stronger than other carbon fibers.

Researchers develop new ultra-light, ultra-stiff 3-D printed materials

June 19, 2014 4:11 pm | by Kenneth Ma, LLNL | News | Comments

Imagine a material with the same weight and density as aerogel—a material so light it's called “frozen smoke”—but with 10,000 times more stiffness. This material could have a profound impact on the aerospace and automotive industries as well as other applications where lightweight, high-stiffness and high-strength materials are needed.

Synthetic aperture sonar to help Navy hunt sea mines

June 19, 2014 8:37 am | by Brett Israel, Georgia Institute of Technology | News | Comments

Since World War II, sea mines have damaged or sunk four times more U.S. Navy ships than all other means of attack combined. New sonar research being performed could improve the Navy’s ability to find sea mines deep under water. The underlying technology, known as synthetic aperture sonar, uses advanced computing and signal processing power to create fine-resolution images of the seafloor based on reflected sound waves.

A new way to detect leaks in pipes

June 19, 2014 8:09 am | by David L. Chandler, MIT News Office | News | Comments

Explosions caused by leaking gas pipes have frequently made headlines in recent years. But while the problem of old and failing pipes has garnered much attention, methods for addressing such failing infrastructure have lagged far behind. Typically, leaks are found using aboveground acoustic sensors. But these systems are very slow, and can miss small leaks altogether. Now researchers have devised a robotic system that can detect leaks.

New manufacturing methods needed for “soft” machines, robots

June 19, 2014 7:52 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have developed a technique that might be used to produce "soft machines" made of elastic materials and liquid metals for potential applications in robotics, medical devices and consumer electronics. Such an elastic technology could make possible robots that have sensory skin and stretchable garments that people might wear to interact with computers or for therapeutic purposes.

Advertisement

Collecting light with artificial moth eyes

June 18, 2014 4:00 pm | News | Comments

Researchers the world over are investigating solar cells which imitate plant photosynthesis, with the goal of using sunlight and water to create synthetic fuels such as hydrogen. Scientists in Switzerland have developed this type of photoelectrochemical cell, but this one recreates a moth’s eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials: iron and tungsten oxide.

Nanofibers for quantum computing

June 17, 2014 4:12 pm | News | Comments

A proposed hybrid quantum processor for a future quantum computer uses trapped atoms as the memory and superconducting qubits as the processor. The concept requires, however, an optical trap that is able to work well with superconductors, which don’t like magnetic fields or high optical power. Joint Quantum Institute scientists believe they’ve developed an effective method for creating these ultra-high transmission optical nanofibers.

Nanoparticle production method could lead to better lights, lenses, solar cells

June 17, 2014 4:02 pm | News | Comments

Titanium dioxide nanoparticles show great promise as optical encapsulants or fillers for tunable refractive index coatings. However, they've been largely shunned because they’ve been difficult and expensive to make. Scientists at Sandia National Laboratories have now come up with an inexpensive way to synthesize properly sized titanium dioxide nanoparticles and is seeking partners who can demonstrate the process at industrial scale.

Researchers develop efficient approach to manufacture 3-D metal parts

June 16, 2014 2:12 pm | by Kenneth Ma, LLNL | News | Comments

Lawrence Livermore National Laboratory researchers have developed a new and more efficient approach to a challenging problem in additive manufacturing—using selective laser melting, namely, the selection of appropriate process parameters that result in parts with desired properties.

Nano-imaging probes molecular disorder

June 13, 2014 10:59 am | News | Comments

In semiconductor-based components, high mobility of charge-carrying particles is important. In organic materials, however, it is uncertain to what degree the molecular order within the thin films affects the mobility and transport of charge carriers. Using a new imaging method, researchers have shown that thin-film organic semiconductors contain regions of structural disorder that could inhibit the transport of charge and limit efficiency.

Advertisement

New circuit design functions at temperatures greater than 650 F

June 13, 2014 8:16 am | News | Comments

Engineers at the Univ. of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 C—or roughly 660 F. The team achieved the higher performance by combining silicon carbide with wide temperature design techniques. In the world of power electronics and integrated circuits, their work represents the first implementation of a number of fundamental analog, digital and mixed-signal blocks.

Research universities form technology consortium to share content

June 12, 2014 7:37 am | by Kim Broekuizen, Univ. of Michigan | News | Comments

Four major U.S. research universities have formed a technology consortium to improve the way in which educational content is shared across universities and ultimately delivered to students. Unizin will provide a common digital infrastructure that will allow member universities to work together to strengthen their traditional missions of education and research using the most innovative technology available today.

The inflatable concrete dome

June 11, 2014 3:51 pm | News | Comments

When concrete shells are constructed, they usually have to be supported by elaborate timber structures. This is one reason why such structures are now rarely built. In Austria, engineers have developed a new construction method that does not require any solid supporting structure at all. Instead, an air cushion is inflated below a concrete slab, bending the concrete and quickly forming a self-supporting shell.

Researchers introduce new benchmark for field-effect transistors

June 11, 2014 3:32 pm | News | Comments

At the 2014 Symposium on VLSI Technology in Triangle Park, N.C., researchers from the Univ. of California, Santa Barbara introduced the highest-performing class III-V metal-oxide semiconductor field-effect transistors (MOSFETs) yet demonstrated. The new MOSFETs exhibit, in an industry first, on-current, off-current and operating voltage comparable to or exceeding production silicon devices, while also staying relatively compact.

Researchers in China develop cheaper method for making superlyophobic surfaces

June 11, 2014 11:41 am | News | Comments

Superlyophobic surfaces are simultaneously repellant for almost any liquid and exhibit high contact angles and low flow resist. But the demanding and usually expensive fabrication remains a bottleneck for further development. Researchers in Shenzhen, China, however, have now formulated a facile and inexpensive microfabrication method that uses polymers to help transfer the superlyophobic structures to curable materials.

Tiny laser-powered sensor-on-a-chip tests chemical composition of liquids

June 11, 2014 7:51 am | News | Comments

Simple solid-state lasers consist of only one material. But quantum cascade lasers are made of a perfectly optimized layer system of different materials so the wavelength of the laser can be tuned. Now a method has been developed in Austria to create a laser and a detector at the same time, on one single chip, in such a way that the wavelength of the laser perfectly matches the wavelength to which the detector is sensitive.

Technology using microwave heating may impact electronics manufacture

June 10, 2014 3:12 pm | News | Comments

Engineers at Oregon State University have successfully shown that a continuous flow reactor can produce high-quality nanoparticles by using microwave-assisted heating. This is essentially the same force that heats up leftover food with such efficiency, but instead of warming up yesterday’s pizza, this concept may change the production of cell phones and televisions or improve solar energy systems.

Researchers create nanoparticle thin films that self-assemble in one minute

June 10, 2014 7:51 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The days of self-assembling nanoparticles taking hours to form a film over a microscopic-sized wafer are over. Researchers with Lawrence Berkeley National Laboratory have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

R&D Scene: 3-D Printing Ushers In New Era of Manufacturing

June 9, 2014 1:42 pm | by Lindsay Hock, Managing Editor | Videos | Comments

Thirty years have passed since 3-D printers first appeared, but only recently have they hinted at a new era of manufacturing. The first working 3-D printer was created in 1984 by Chuck Hull of 3D Systems Corp. This early device, based on stereolithography, gave way to the first truly practical 3-D printing technology patented by the Massachusetts Institute of Technology in 1993.

Octocopter named “HorseFly” takes flight

June 9, 2014 9:48 am | by Tom Robinette, Univ. of Cincinnati | News | Comments

HorseFly has eight rotors, a wirelessly recharging battery and a mission to deliver merchandise right to your doorstep. The new drone is the result of collaborative efforts by the Univ. of Cincinnati and AMP Electric Vehicles makers of the WorkHorse all-electric delivery truck. The newly designed, autonomous unmanned aerial vehicle was developed to work in tandem with AMP's delivery trucks to deliver packages in an efficient way.

Cleveland to get new additive manufacturing center

June 9, 2014 8:45 am | News | Comments

Rapid Prototype + Manufacturing (rp+m) has formally partnered with Case Western Reserve Univ. to move its research and development arm to the university, joining forces with faculty researchers to develop new technologies in the growing additive manufacturing market, assist students in entrepreneurship and with research opportunities, and boost economic development in the region.

Shatterproof polymer screens to help save smartphones

June 6, 2014 10:57 am | News | Comments

Polymer scientists in Ohio have demonstrated how a transparent layer of electrodes on a polymer surface could be extraordinarily tough and flexible, withstanding repeated scotch tape peeling and bending tests. According to its developers, the new material could replace conventional indium tin oxide coatings currently used for touchscreens.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading