Advertisement
Manufacturing
Subscribe to Manufacturing
View Sample

FREE Email Newsletter

Drones: Next big thing in aviation is small

July 15, 2014 2:21 pm | by Danica Kirka - Associated Press - Associated Press | News | Comments

The next big thing in aviation may be really small. With some no bigger than a hummingbird, the hottest things at this week's Farnborough International Airshow are tiny compared with the titans of the sky, such as the Airbus 380 or the Boeing Dreamliner.

Swiss cross made from just 20 single atoms

July 15, 2014 9:14 am | News | Comments

Together with teams from Finland and Japan, physicists from the Univ. of Basel in Switzerland were able to place 20 single bromine atoms on a fully insulated surface at room temperature to form the smallest “Swiss cross” ever created. The effort is a breakthrough because the fabrication of artificial structures on an insulator at room temperature is difficult. It is largest number of atomic manipulations ever achieved at room temperature.

3-D printed anatomy to mark a new era for medical training

July 14, 2014 11:32 am | News | Comments

The creators of a unique kit containing 3-D printed anatomical body parts say it will revolutionize medical education and training, especially in countries where cadaver use is problematic. The “3D Printed Anatomy Series”, developed by experts in Australia, is thought to be the first commercially available resource of its kind. The kit contains no human tissue, yet it provides all the major parts of the body required to teach anatomy.

Advertisement

From stronger Kevlar to better biology

July 14, 2014 9:17 am | by Angela Herring, Northeastern Univ. | News | Comments

Mar­ilyn Minus, a materials expert and assis­tant pro­fessor at Northeastern Univ., is exploring directed self-assembly methods using carbon nanotubes and polymer solutions. So far, she’s used the approach to develop a polymer com­posite mate­rial that is stronger than Kevlar yet much lighter and less expen­sive. Minus is now expanding this work to incor­po­rate more polymer classes: flame retar­dant mate­rials and bio­log­ical molecules.

Phase-changing material could allow robots to switch between hard and soft states

July 14, 2014 7:35 am | by Helen Knight, MIT News correspondent | Videos | Comments

In the movie “Terminator 2,” the shape-shifting T-1000 robot morphs into a liquid state to squeeze through tight spaces or to repair itself when harmed. Now a phase-changing material built from wax and foam, and capable of switching between hard and soft states, could allow even low-cost robots to perform the same feat.

Drones could provide perfect lighting for photography

July 11, 2014 11:48 am | by Larry Hardesty, MIT | News | Comments

Lighting is crucial to the art of photography, but they are cumbersome and difficult to use properly. Researchers at Massachusetts Institute of Technology and Cornell Univ. aim to change that by providing photographers with squadrons of small, light-equipped autonomous robots that automatically assume the positions necessary to produce lighting effects specified through a simple, intuitive, camera-mounted interface.

Agile Aperture Antenna tested on aircraft to survey ground emitters

July 11, 2014 8:02 am | by John Toon, Georgia Institute of Technology | News | Comments

The Georgia Tech Research Institute’s software-defined, electronically reconfigurable Agile Aperture Antenna (A3) has now been tested on the land, sea and air. Dept. of Defense representatives were in attendance during a recent event where two of the low-power devices, which can change beam directions in a thousandth of a second, were demonstrated in an aircraft during flight tests held in Virginia during February 2014.

New technology offers precise control of molecular self-assembly

July 10, 2014 5:09 pm | News | Comments

A research group based in Japan has developed a new methodology that can easily and precisely control the timing, structure, and functions in the self-assembly of pi-conjugated molecules, which are an important enabling building block in the field of organic electronics. One of the key steps is keeping these molecules in a liquid form at room temperature.

Advertisement

New York police see risks with drones' popularity

July 10, 2014 9:43 am | by Tom Hays, Associated Press | News | Comments

Police in New York City are concerned that the increasing popularity of drones in such a tightly packed metropolis could carry major risks, even becoming a potential tool for terrorists to conduct surveillance or carry out attacks. Even though it's illegal to fly the devices just about anywhere in New York City without permission, recent incidents and breathtaking videos of Manhattan suggest that the restrictions are being widely flouted.

Heads up, World Cup teams: The robots are coming

July 10, 2014 8:33 am | by Kathy Matheson, Associated Press | News | Comments

When robots first started playing soccer, it was a challenge for them just to see the ball. And to stay upright. But the machines participating in this month's international RoboCup tournament are making passes and scoring points. Their ultimate goal? To beat the human World Cup champs within the next 35 years.

Artificial cilia: Scientists develop nanostructured transportation system

July 7, 2014 3:40 pm | News | Comments

For billions of years, bacteria have moved themselves using cilia. Now, researchers have constructed molecules that imitate these tiny, hair-like structures. The innovation was possible by nanofabricating artificial cilia that would respond in just one direction to provide a net displacement of motion.

The new atomic age: Building smaller, greener electronics

July 7, 2014 3:06 pm | by Bryan Alary, Univ. of Alberta | News | Comments

Robert Wolkow and his team at the Univ. of Alberta are working to engineer atomically precise computing technologies that have practical, real-world applications. In recent research, he and his team observed for the first time how an electrical current flows across the skin of a silicon crystal and also measured electrical resistance as the current moved over a single atomic step.

Study: Power consumption of robot joints could be 40% less

July 7, 2014 2:24 pm | News | Comments

Digital controllers are used to drive the motors of the joints in robots used in industrial processes. Programming and developing these controllers is not easy. Researchers in Spain have analyzed a way of propelling these systems or robots in a more energy-efficient way and has shown, on a laboratory level, that in some cases energy consumption can be cut by up to 40% without sacrificing precision.

Advertisement

With "ribbons" of graphene, width matters

July 7, 2014 9:39 am | by Laura L. Hunt, UW-Milwaukee | News | Comments

Using graphene ribbons just several atoms across, a group of researchers at the Univ. of Wisconsin-Milwaukee has found a novel way to “tune” the material, causing the extremely efficient conductor of electricity to act as a semiconductor. By imaging the ribbons with scanning-tunneling microscopy, researchers have confirmed how narrow the ribbon width must be. Achieving less than 10 nm in width is a big challenge.

Muscle-powered bio-bots walk on command

July 2, 2014 9:28 am | News | Comments

Engineers at the Univ. of Illinois at Urbana-Champaign have demonstrated a class of walking “bio-bots” powered by muscle cells and controlled with electrical pulses, giving researchers unprecedented command over their function. The design is inspired by the muscle-tendon-bone complex found in nature. They have a backbone of 3-D printed hydrogel, strong enough to give the bio-bot structure but flexible enough to bend like a joint.

New method detects infrared energy using a nanoporous photodetector

July 1, 2014 10:09 am | News | Comments

Experiments aimed at devising new types of photodetectors have been triggered by the increasing use of optoelectronic devices. Researchers in China have proposed a new type of infrared photodetector made from zinc oxide and silicon. Its nanoporous nature, synthesized by a simple sol-gel method, allows it to be responsive to infrared wavelengths.

Researchers create quantum dots with single-atom precision

June 30, 2014 7:59 am | News | Comments

An international team of physicists including researchers from the U.S. Naval Research Laboratory has used a scanning tunneling microscope to create quantum dots with identical, deterministic sizes. The perfect reproducibility of these dots opens the door to quantum dot architectures completely free of uncontrolled variations, an important goal for technologies from nanophotonics to quantum information processing.

Diamond plates create nanostructures through pressure, not chemistry

June 27, 2014 3:09 pm | News | Comments

You wouldn’t think that mechanical force could process nanoparticles more subtly than the most advanced chemistry. But researchers at Sandia National Laboratories have created a newly patented and original method that uses simple pressure to produce finer and cleaner results in forming silver nanostructures than do chemical methods, which are not only inflexible in their results but leave harmful byproducts.

Chemists develop magnetically responsive liquid crystals

June 27, 2014 9:38 am | News | Comments

Scientists at the Univ. of California, Riverside have constructed liquid crystals with optical properties that can be instantly and reversibly controlled by an external magnetic field. Unlike conventional liquid crystals, which rotate and align themselves when an electric field is applied, the new crystals are essentially a liquid dispersion of magnetic nanorods.

Carbon-fiber epoxy honeycombs mimic material performance of balsa wood

June 25, 2014 4:06 pm | by Paul Karoff, Harvard Univ. | News | Comments

In wind farms across North America and Europe, sleek turbines equipped with state-of-the-art technology convert wind energy into electric power. But tucked inside the blades of these feats of modern engineering is a decidedly low-tech core material: balsa wood.

New synthesis method generates functionalized carbon nanolayers

June 25, 2014 8:10 am | News | Comments

An international team has developed an elegant method for producing self-organized and functionalized carbon nanolayers and equipping them chemically with a range of functions. The effort depended on the development of a special compound, the molecules of which were aligned perfectly in parallel to each other in a single self-organized layer, like the bristles on a brush.

Collaborative learning for robots

June 25, 2014 7:54 am | by Larry Hardesty, MIT News Office | News | Comments

Machine learning, in which computers learn new skills by looking for patterns in training data, is the basis of most recent advances in artificial intelligence, from voice-recognition systems to self-parking cars. It’s also the technique that autonomous robots typically use to build models of their environments. That type of model-building gets complicated, however, in cases in which clusters of robots work as teams.

Woman or machine? New robots look creepily human

June 24, 2014 9:46 am | by Yuri Kageyama, AP Business Writer | News | Comments

New robot guides at a Tokyo museum look so eerily human and speak so smoothly they almost outdo people. The two life-size robots, which have silicon skin, artificial muscles, and can speak in a variety of voices, will be on display starting Wednesday, allowing the public to interact with them extensively.

Super-stretchable yarn is made of graphene

June 23, 2014 12:30 pm | News | Comments

According to researchers, a simple, scalable method of making strong, stretchable graphene oxide fibers that are easily scrolled into yarns and have strengths approaching that of Kevlar is possible. An international collaboration has recently produced graphene oxide yarn fibers much stronger than other carbon fibers.

Researchers develop new ultra-light, ultra-stiff 3-D printed materials

June 19, 2014 4:11 pm | by Kenneth Ma, LLNL | News | Comments

Imagine a material with the same weight and density as aerogel—a material so light it's called “frozen smoke”—but with 10,000 times more stiffness. This material could have a profound impact on the aerospace and automotive industries as well as other applications where lightweight, high-stiffness and high-strength materials are needed.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading