Advertisement
Manufacturing
Subscribe to Manufacturing
View Sample

FREE Email Newsletter

Daniel Wilson Ph.D. researcher with UAV and drogue

Sky-high refuelling for UAVs

April 24, 2015 11:13 am | by Univ. of Sydney | News | Comments

A Univ. of Sydney researcher has designed and successfully tested a method for autonomously docking drones for refueling or recharging, in mid-air. He used a combination of precise measurements from an infrared camera, with GPS and inertial sensors to allow the sky-high docking to occur.

A tetrahedron is a polyhedron composed of four triangular faces, three of which meet at each corner or vertex. It has six edges and four vertices.

Revolutionary discovery leads to invention of new "building blocks"

April 24, 2015 10:16 am | by Univ. of Akron | News | Comments

Macromolecular science will have to add a new giant molecule to its lexicon thanks to new and cutting-edge polymer research at The Univ. of Akron (UA). The research team led by Stephen Z.D. Cheng, professor at UA’s college of polymer science and polymer engineering, invented a new thinking pathway in the design and synthesis of macromolecules—the backbone of modern polymers—by creating an original class of giant tetrahedra.

James Webb Space Telescope's Pathfinder backplane test model is being prepared for its cryogenic test. Courtesy of NASA/Chris Gunn

Building Hubble's successor: Crucial Pathfinder test set up inside Chamber A

April 24, 2015 10:05 am | by Laura Betz, NASA's Goddard Space Flight Center | News | Comments

Inside NASA's giant thermal vacuum chamber, called Chamber A, at NASA's Johnson Space Center in Houston, the James Webb Space Telescope's Pathfinder backplane test model is being prepared for its cryogenic test. Previously used for manned spaceflight missions, this historic chamber is now filled with engineers and technicians preparing for a crucial test.

Advertisement

Real-Time Process Measurement: A Sea Change in Manufacturing

April 24, 2015 8:44 am | by Chad Lieber, VP of Product Development, Prozess Technologie and Brian Sullivan, Director of Sales, Valin Corp. | Articles | Comments

In a world where most information is available in an instant, plant managers and engineers are continuously trying to find ways to improve the efficiency of processes along the manufacturing line. Analyzing these processes can be a difficult task. Until recently, days of laboratory work were often required to analyze any given sample segment or process in a manufacturing line.

3D-printed aerogels improve energy storage

April 23, 2015 8:03 am | by Anne M. Stark, Lawrence Livermore National Laboratory | News | Comments

A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing.

3D-printed blossoms a growing tool for ecology

April 17, 2015 10:36 am | by Michelle Ma, Univ. of Washington | News | Comments

3D printing has been used to make everything from cars to medical implants. Now, Univ. of Washington ecologists are using the technology to make artificial flowers, which they say could revolutionize our understanding of plant-pollinator interactions.

3D-Printed Optic Breakthroughs

April 16, 2015 2:20 pm | by Tim Studt | Articles | Comments

Just a few years ago, many researchers working in alternative manufacturing methods believed the basic layering technologies integral to 3D printing limited the capability of this technique to build quality optical devices and lenses. But, as rapidly evolving as these techniques are, and as broad ranging as the applications it’s infiltrating, this limitation has been surmounted by a number of research groups around the world.

Report charts a research path for improving “printed” metal parts

April 14, 2015 12:05 pm | by NIST | News | Comments

Additive manufacturing has been called a game changer. But new games require new instructions, and the manuals for a growing assortment of methods for building parts and products layer-by-layer, collectively known as "3D printing", still are works in progress. Manufacturing researchers at NIST have scoped out the missing sections in current guidelines for powder bed fusion, the chief method for "printing" metal parts.

Advertisement

Technique could slash energy used to produce plastics

April 14, 2015 11:52 am | by Univ. of Colorado, Boulder | News | Comments

A new material developed at the Univ. of Colorado Boulder could radically reduce the energy needed to produce a wide variety of plastic products, from grocery bags and cling wrap to replacement hips and bulletproof vests. Approximately 80 million metric tons of polyethylene is produced globally each year, making it the most common plastic in the world.

Taking aircraft manufacturing out of the oven

April 14, 2015 8:03 am | by Jennifer Chu, MIT News Office | News | Comments

Composite materials used in aircraft wings and fuselages are typically manufactured in large, industrial-sized ovens: Multiple polymer layers are blasted with temperatures up to 750 F, and solidified to form a solid, resilient material. Using this approach, considerable energy is required first to heat the oven, then the gas around it, and finally the actual composite.

Inkjet-printed liquid metal could bring wearable tech, soft robotics

April 8, 2015 7:40 am | by Emil Venere, Purdue Univ. | News | Comments

New research shows how inkjet-printing technology can be used to mass-produce electronic circuits made of liquid-metal alloys for "soft robots" and flexible electronics. Elastic technologies could make possible a new class of pliable robots and stretchable garments that people might wear to interact with computers or for therapeutic purposes.

Office inkjet printer could produce simple tool to identify infectious diseases

April 7, 2015 12:03 pm | by Michelle Donovan, McMaster Univ. | News | Comments

Consumers are one step closer to benefiting from packaging that could give simple text warnings when food is contaminated with deadly pathogens like E. coli and Salmonella, and patients could soon receive real-time diagnoses of infections such as C. difficile right in their doctors' offices, saving critical time and trips to the lab.

Camera chip provides superfine 3-D resolution

April 6, 2015 8:00 am | by Jessica Stoller-Conrad, Caltech | News | Comments

Imagine you need to have an almost exact copy of an object. Now imagine that you can just pull your smartphone out of your pocket, take a snapshot with its integrated 3-D imager, send it to your 3-D printer and, within minutes, you have reproduced a replica accurate to within microns of the original object. This feat may soon be possible because of a new, tiny high-resolution 3-D imager developed at Caltech.

Advertisement

Robotic vehicle provides in-depth look under Antarctica

April 6, 2015 7:52 am | by Brett Israel, Georgia Tech | News | Comments

A first-of-its-kind robotic vehicle recently dove to depths never before visited under Antarctica’s Ross Ice Shelf and brought back video of life on the seafloor. A team of scientists and engineers from the Georgia Institute of Technology assembled the unmanned, underwater vehicle on Antarctica. They deployed (and retrieved) the vehicle through a 12-in diameter hole through 20 m of ice and another 500 m of water to the sea floor.

Soft, energy-efficient robotic wings

March 31, 2015 12:40 pm | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Dielectric elastomers are novel materials for making actuators or motors with soft and lightweight properties that can undergo large active deformations with high-energy conversion efficiencies. This has made dielectric elastomers popular for creating devices such as robotic hands, soft robots, tunable lenses and pneumatic valves, and possibly flapping robotic wings.

Manufacturing process could yield better solar cells, faster chips

March 25, 2015 10:57 am | by Tom Abate, Stanford Engineering | Videos | Comments

Computer chips, solar cells and other electronic devices have traditionally been based on silicon, the most famous of the semiconductors, that special class of materials whose unique electronic properties can be manipulated to turn electricity on and off the way faucets control the flow of water. There are other semiconductors. Gallium arsenide is one such material and it has certain technical advantages over silicon.

Snake robots learn to turn by following real sidewinders’ lead

March 25, 2015 7:59 am | by John Toon, Georgia Institute of Technology | News | Comments

Researchers at Carnegie Mellon Univ. (CMU) who develop snake-like robots have picked up a few tricks from real sidewinder rattlesnakes on how to make rapid and even sharp turns with their undulating, modular device. Working with colleagues at the Georgia Institute of Technology and Zoo Atlanta, they have analyzed the motions of sidewinders and tested their observations on CMU’s snake robots.

New technique could bring quality-control tool for nanocomposites

March 23, 2015 4:10 pm | by Emil Venere, Purdue Univ. | News | Comments

Layered nanocomposites containing tiny structures mixed into a polymer matrix are gaining commercial use, but their complex nature can hide defects that affect performance. Now researchers have developed a system capable of detecting such defects using a "Kelvin probe" scanning method with an atomic force microscope. The ability to look below the surface of nanocomposites represents a potential new quality-control tool for industry. 

Artificial intelligence systems more apt to fail than destroy

March 23, 2015 1:52 pm | by David Stauth, Oregon State Univ. | News | Comments

The most realistic risks about the dangers of artificial intelligence are basic mistakes, breakdowns and cyber attacks, an expert in the field says—more so than machines that become super powerful, run amok and try to destroy the human race.

Rare-earth innovation to improve nylon manufacturing

March 19, 2015 8:56 am | by Laura Millsaps, Ames Laboratory Public Affairs | News | Comments

The Critical Materials Institute has created a new chemical process that makes use of the widely available rare-earth metal cerium to improve the manufacture of nylon. The process uses a cerium-based material made into nanometer-sized particles with a palladium catalyst to produce cyclohexanone, a key ingredient in the production of nylon.

Cool process to make better graphene

March 18, 2015 8:05 am | by Ker Than, Caltech | News | Comments

A new technique invented at Caltech to produce graphene at room temperature could help pave the way for commercially feasible graphene-based solar cells and LEDs, large-panel displays and flexible electronics. With the new technique, researchers can grow large sheets of electronic-grade graphene in much less time and at much lower temperatures.

A call to change recycling standards as 3D printing expands

March 17, 2015 4:31 pm | by Allison Mills, Michigan Technological Univ. | News | Comments

The 3D printing revolution has changed the way we think about plastics. Everything from children’s toys to office supplies to high-value laboratory equipment can be printed. The potential savings of producing goods at the household- and lab-scale is remarkable, especially when producers use old prints and recycle them.

Researchers collaborate to develop revolutionary 3D printing technology

March 17, 2015 10:30 am | by Univ. of North Carolina, Chapel Hill | Videos | Comments

A 3D printing technology developed by Silicon Valley startup, Carbon3D Inc., enables objects to rise from a liquid media continuously rather than being built layer-by-layer as they have been for the past 25 years, representing a fundamentally new approach to 3D printing. The technology allows ready-to-use products to be made 25 to 100 times faster than other methods.

Additive manufacturing could greatly improve diabetes management

March 17, 2015 8:55 am | by David Stauth, Oregon State Univ. | News | Comments

Engineers at Oregon State Univ. have used additive manufacturing to create an improved type of glucose sensor for patients with Type 1diabetes, part of a system that should work better, cost less and be more comfortable for the patient. A key advance is use of electrohydrodynamic jet, or “e-jet” printing, to make the sensor.

How 3-D bioprinting could address the shortage of organ donations

March 12, 2015 7:49 am | by American Chemical Society | News | Comments

Three-dimensional bioprinting has come a long way since its early days when a bioengineer replaced the ink in his desktop printer with living cells. Scientists have since successfully printed small patches of tissue. Could it someday allow us to custom-print human organs for patients in need of transplants?

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading