Advertisement
Manufacturing
Subscribe to Manufacturing

The Lead

NIST offers electronics industry two ways to snoop on self-organizing molecules

October 23, 2014 12:33 pm | News | Comments

A few short years ago, the idea of a practical manufacturing process based on getting molecules to organize themselves in useful nanoscale shapes seemed far-fetched. Recent work at NIST, Massachusetts Institute of Technology and IBM Almaden Research Center suggest this capability isn’t far off, however, by demonstrating self-assembly of thin films on a polymer template that creates precise rows just 10 nm wide.

What a “Star Wars” laser bullet really looks like

October 22, 2014 2:50 pm | News | Comments

Action-packed science-fiction movies often feature colorful laser bolts. But what would a real...

New 3-D printing algorithms speed production, reduce waste

October 22, 2014 7:51 am | by Emil Venere, Purdue Univ. | News | Comments

New software algorithms have been shown to significantly reduce the time and...

Starfish shell-mimicking crystals could advance 3-D printing pills

October 21, 2014 8:19 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a design that mimics a hard-to-duplicate texture of starfish shells, Univ. of Michigan...

View Sample

FREE Email Newsletter

Goldilocks principle wrong for particle assembly

October 20, 2014 9:32 am | by New York Univ. | News | Comments

Microscopic particles that bind under low temperatures will melt as temperatures rise to moderate levels, but re-connect under hotter conditions, a team of New York Univ. scientists has found. Their discovery points to new ways to create "smart materials," cutting-edge materials that adapt to their environment by taking new forms, and to sharpen the detail of 3-D printing.

Scientist invent new method for fabricating graphene nanoribbons

October 17, 2014 9:23 am | by Shaun Mason, UCLA | News | Comments

Graphene’s exotic properties can be tailored by cutting large sheets down to ribbons of specific lengths and edge configurations. But this “top-down” fabrication approach is not yet practical, because current lithographic techniques always produce defects. Now, scientists from the U.S. and Japan have discovered a new “bottom-up” self-assembly method for producing defect-free graphene nanoribbons with periodic zigzag-edge regions.

Keeping an Eye on Quality

October 16, 2014 2:57 pm | by Olympus | Articles | Comments

A leader in the field of minimally invasive surgery device development operates state-of-the-art R&D and manufacturing facilities—facilities that depend on today’s most advanced quality assurance/quality testing procedures. To ensure all equipment leaving its production facilities meets the highest performance and reliability standards, the company relies on a QA/QC system made possible by industrial microscope and analyzer solutions.

Advertisement

A simple and versatile way to build three-dimensional materials of the future

October 16, 2014 10:14 am | News | Comments

Researchers in Japan have developed a new yet simple technique called "diffusion driven layer-by-layer assembly" to construct graphene into porous 3-D structures for applications in devices such as batteries and supercapacitors. The new method borrowed a principle from polymer chemistry, known as interfacial complexation, to allow graphene oxide to form a stable composite layer with an oppositely charged polymer.

Scientists synthesize a two-element atomic chain inside a carbon nanotube

October 16, 2014 10:05 am | News | Comments

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology have synthesized an atomic chain in which two elements, cesium and iodine, are aligned alternately inside a carbon nanotube. Analyzed using electron microscopy and spectroscopy, the invention could shed light on the adsorption mechanisms of radioactive elements.

Research reveals unique capabilities of 3-D printing

October 16, 2014 8:51 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Researchers at Oak Ridge National Laboratory have demonstrated an additive manufacturing method to control the structure and properties of metal components with precision unmatched by conventional manufacturing processes. The researchers demonstrated the method using an ARCAM electron beam melting system (EBM), in which successive layers of a metal powder are fused together by an electron beam into a 3-D product.

Electric vehicle technology packs more punch in smaller package

October 15, 2014 8:46 am | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

Using 3-D printing and novel semiconductors, researchers at Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful and more efficient. At the core of this development is wide bandgap material made of silicon carbide with qualities superior to standard semiconductor materials.

Force-sensing microrobots to probe cells

October 14, 2014 7:56 am | by Emil Venere, Purdue Univ. | News | Comments

Inexpensive microrobots capable of probing and manipulating individual cells and tissue for biological research and medical applications are closer to reality with the design of a system that senses the minute forces exerted by a robot's tiny probe. Microrobots small enough to interact with cells already exist. However, there is no easy, inexpensive way to measure the small forces applied to cells by the robots, until now.

Advertisement

The new family portrait? 3-D-printed statue selfies

October 10, 2014 11:52 am | by Peter Svensson, AP Technology Writer | News | Comments

The advent of digital cameras and smartphones killed the traditional mall portrait studio, but 3-D printing has sparked a new trend. Overloaded with digital photos, statues may be moving in to fulfill our desire for portraits that stand out. New York's Museum of Art and Design offered scans and statues earlier this year. Shapeways, the company that supplied the exhibit, scanned about 6,000 people and sold about 1,500 statues for $30.

Snakes and snake-like robots show how sidewinders conquer sandy slopes

October 10, 2014 8:15 am | by John Toon, Georgia Tech and Byron Spice, Carnegie Mellon Univ. | Videos | Comments

The amazing ability of sidewinder snakes to quickly climb sandy slopes was once something biologists only vaguely understood and roboticists only dreamed of replicating. By studying the snakes in a unique bed of inclined sand and using a snake-like robot to test ideas spawned by observing the real animals, both biologists and roboticists have now gained long-sought insights, including how sidewinders effectively traverse sandy slopes.

Droplets made to order

October 7, 2014 9:33 am | by David L. Chandler, MIT | News | Comments

Massachusetts Institute of Technology researchers have developed a new way of creating surfaces on which droplets of any desired shape can spontaneously form. They say this approach could lead to new biomedical assay devices and light-emitting diode display screens, among other applications. The new work represents the first time that scientists can control the shape of the contact area of the droplets.

Fast, cheap nanomanufacturing

October 6, 2014 9:19 am | by Larry Hardesty, MIT | News | Comments

Arrays of tiny conical tips that eject ionized materials are being made at the Massachusetts Institute of Technology. The technology, which harnesses electrostatic forces, has a range of promising applications, such as spinning out nanofibers for use in “smart” textiles or propulsion systems for fist-sized “nanosatellites.” The latest prototype array that generates 10 times the ion current per emitter that previous arrays did.

Online resource provides free tools, simulations for composite materials

October 3, 2014 11:59 am | News | Comments

Individuals in industrial associations, educational institutions and government organizations who are interested in composites, or materials made from constituent materials with different physical or chemical properties, now have free, 24/7 access to simulation tools through an online community with offices in the Purdue Research Park.

Advertisement

Batteries included: A solar cell that stores its own power

October 3, 2014 9:07 am | by Pam Frost Gorder, Ohio State Univ. | News | Comments

The world’s first “solar battery”, invented by researchers at Ohio State Univ., is a battery and a solar cell combined into one hybrid device. Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

Creating nanostructures using simple stamps

October 2, 2014 1:31 pm | News | Comments

Nanostructures of virtually any possible shape can now be made using a combination of techniques developed to exploit the unique properties of so-called perovskites. The group based in the Netherlands, developed a pulsed laser deposition technique to create patterns in ultra thin layers, one atomic layer at a time. The perovskites’ crystal structure is undamaged by this soft lithography technique, maintaining electrical conductivity.

Ultrafast remote switching of light emission

October 1, 2014 9:15 am | News | Comments

Researchers in the Netherlands can now, for the first time, remotely control a miniature light source at timescales of 200 trillionths of a second. Physicists have developed a way of remotely controlling the nanoscale light sources at an extremely short timescale. These light sources are needed to be able to transmit quantum information.

Scientists improve microscopic batteries with homebuilt imaging analysis

September 29, 2014 12:26 pm | News | Comments

In a rare case of having their cake and eating it too, scientists from NIST and other institutions have developed a toolset that allows them to explore the complex interior of tiny, multi-layered batteries they devised. It provides insight into the batteries’ performance without destroying them, which results in both a useful probe for scientists and a potential power source for micromachines.

New technology may lead to prolonged power in mobile devices

September 29, 2014 8:40 am | News | Comments

Researchers from the Univ. of Texas at Dallas have created technology that could be the first step toward wearable computers with self-contained power sources or, more immediately, a smartphone that doesn’t die after a few hours of heavy use. This technology  taps into the power of a single electron to control energy consumption inside transistors, which are at the core of most modern electronic systems.

Underwater robot for port security

September 26, 2014 7:42 am | by Larry Hardesty, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers unveiled an oval-shaped submersible robot, a little smaller than a football, with a flattened panel on one side that can slide along an underwater surface to perform ultrasound scans. Originally designed to look for cracks in nuclear reactors’ water tanks, the robot could also inspect ships for the false hulls and propeller shafts that smugglers frequently use to hide contraband.

World’s smallest reference material is a big plus for nanotechnology

September 25, 2014 9:44 am | News | Comments

If it's true that good things come in small packages, then NIST can now make anyone working with nanoparticles very happy. The institute recently issued Reference Material (RM) 8027, the smallest known reference material ever created for validating measurements of man-made, ultrafine particles between 1 and 100 nm in size.

A Diamond is R&D’s “Synthetic” Best Friend

September 24, 2014 10:10 am | by Lindsay Hock, Managing Editor | Articles | Comments

Diamonds aren’t just a girl’s best friend, they’re also R&D’s best friend—or at least a new acquaintance. Many laboratories and companies are embracing synthetic diamond for its elevated super properties in applications ranging from analytical instruments and biomedical sensors to electronics and lasers to water purification.

Low-cost, “green” transistor heralds advance in flexible electronics

September 24, 2014 10:02 am | News | Comments

As tech company LG demonstrated this summer with the unveiling of its 18-in flexible screen, the next generation of roll-up displays is tantalizingly close. Researchers are now reporting a new, inexpensive and simple way to make transparent, flexible transistors that could help bring roll-up smartphones with see-through displays and other bendable gadgets to consumers in just a few years.

New solar cells serve free lunch

September 24, 2014 9:07 am | by Poncie Rutsch, Okinawa Institute of Science and Technology | News | Comments

A common complaints about solar power is that solar panels are still too expensive. Efforts at making them more efficient or longer-lasting have been limited. A new method developed in Okinawa could solve the expense problem: A hybrid form of deposition is being used to create perovskite solar cells from a mixture of inexpensive organic and inorganic raw materials, eliminating the need for expensive crystallized silicon.

Robotic fabric could bring “active clothing”, wearable robots

September 23, 2014 2:20 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers are developing a robotic fabric that moves and contracts and is embedded with sensors, an approach that could lead to "active clothing" or a new class of "soft" robots. The robotic fabric, developed at Purdue Univ.,  is a cotton material containing sensors made of a flexible polymer and threadlike strands of a shape-memory alloy that return to a coiled shape when heated, causing the fabric to move.

New formulation leads to improved liquid battery

September 23, 2014 2:07 pm | by David L. Chandler, MIT | News | Comments

Donald Sadoway and his colleagues at the Massachusetts Institute of Technology have already started a company to produce electrical-grid-scale liquid batteries, whose layers of molten material automatically separate due to their differing densities. But a newly developed formula substitutes different metals for the molten layers. The new formula allows the battery to work at a much lower temperature.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading