Advertisement
Manufacturing
Subscribe to Manufacturing

The Lead

“Swiss cheese” membrane with variable holes

October 31, 2014 10:01 am | News | Comments

A new membrane, developed scientists in the Netherlands, can be made more or less porous “on demand”. In this way, smart switching between “open” and “closed” is possible, which opens the way to innovative applications in biosensors, chemical analysis and catalysis.

Projecting a robot’s intentions

October 29, 2014 1:27 pm | by Jennifer Chu, MIT | Videos | Comments

Inside Massachusetts Institute of Technology’s Building 41, a small, Roomba-like robot is trying...

Self-assembled membranes hint at biomedical applications

October 28, 2014 11:36 am | by David Lindley, Argonne National Laboratory | News | Comments

Techniques for self-assembling of molecules have grown increasingly sophisticated, but...

Dazzlingly sharp images on curved screens

October 27, 2014 12:54 pm | News | Comments

Projecting images on curved screens poses a dilemma. The sharper the image, the darker it is,...

View Sample

FREE Email Newsletter

Fraunhofer develops economical process for micro energy harvesting

October 27, 2014 9:52 am | News | Comments

The trend toward energy self-sufficient probes and ever smaller mobile electronics systems continues, and are used to monitor the status of the engines on airplanes, or for medical implants. They gather the energy they need for this from their immediate environment, such as vibrations. Fraunhofer Institute researchers have developed a process for the economical production of piezoelectric materials that supply this type of energy.

Turning loss to gain

October 27, 2014 7:42 am | by Steven Schultz, Princeton Univ. | News | Comments

Lasers are so deeply integrated into modern technology that their basic operations would seem well understood. CD players, medical diagnostics and military surveillance all depend on lasers. Re-examining longstanding beliefs about the physics of these devices, Princeton Univ. engineers have now shown that carefully restricting the delivery of power to certain areas within a laser could boost its output by many orders of magnitude.

Cooking up carbon: Sawdust and iron in the melting pot

October 24, 2014 10:16 am | News | Comments

Researchers in the U.K. have found a new way to make nanostructured carbon using the waste product sawdust. By cooking sawdust with a thin coating of iron at 700 C, they have discovered that they can create carbon with a structure made up of many tiny tubes. These tubes are one thousand times smaller than an average human hair.

Advertisement

NIST offers electronics industry two ways to snoop on self-organizing molecules

October 23, 2014 12:33 pm | News | Comments

A few short years ago, the idea of a practical manufacturing process based on getting molecules to organize themselves in useful nanoscale shapes seemed far-fetched. Recent work at NIST, Massachusetts Institute of Technology and IBM Almaden Research Center suggest this capability isn’t far off, however, by demonstrating self-assembly of thin films on a polymer template that creates precise rows just 10 nm wide.

What a “Star Wars” laser bullet really looks like

October 22, 2014 2:50 pm | News | Comments

Action-packed science-fiction movies often feature colorful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? The answers lie in a film made by researchers in Poland who have captured the passage of an ultrashort laser pulse through the air.

New 3-D printing algorithms speed production, reduce waste

October 22, 2014 7:51 am | by Emil Venere, Purdue Univ. | News | Comments

New software algorithms have been shown to significantly reduce the time and material needed to produce objects with 3-D printers. Because the printers create objects layer-by-layer from the bottom up, this poses a challenge when printing overhanging or protruding features like a figure's outstretched arms. They must be formed using supporting structures—which are later removed—adding time and material to the process.

Starfish shell-mimicking crystals could advance 3-D printing pills

October 21, 2014 8:19 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a design that mimics a hard-to-duplicate texture of starfish shells, Univ. of Michigan engineers have made rounded crystals that have no facets. The team calls the crystals "nanolobes". The nanolobes' shape and the way they're made have promising applications. The geometry could potentially be useful to guide light in advanced LEDs, solar cells and non-reflective surfaces.

Goldilocks principle wrong for particle assembly

October 20, 2014 9:32 am | by New York Univ. | News | Comments

Microscopic particles that bind under low temperatures will melt as temperatures rise to moderate levels, but re-connect under hotter conditions, a team of New York Univ. scientists has found. Their discovery points to new ways to create "smart materials," cutting-edge materials that adapt to their environment by taking new forms, and to sharpen the detail of 3-D printing.

Advertisement

Scientist invent new method for fabricating graphene nanoribbons

October 17, 2014 9:23 am | by Shaun Mason, UCLA | News | Comments

Graphene’s exotic properties can be tailored by cutting large sheets down to ribbons of specific lengths and edge configurations. But this “top-down” fabrication approach is not yet practical, because current lithographic techniques always produce defects. Now, scientists from the U.S. and Japan have discovered a new “bottom-up” self-assembly method for producing defect-free graphene nanoribbons with periodic zigzag-edge regions.

Keeping an Eye on Quality

October 16, 2014 2:57 pm | by Olympus | Articles | Comments

A leader in the field of minimally invasive surgery device development operates state-of-the-art R&D and manufacturing facilities—facilities that depend on today’s most advanced quality assurance/quality testing procedures. To ensure all equipment leaving its production facilities meets the highest performance and reliability standards, the company relies on a QA/QC system made possible by industrial microscope and analyzer solutions.

A simple and versatile way to build three-dimensional materials of the future

October 16, 2014 10:14 am | News | Comments

Researchers in Japan have developed a new yet simple technique called "diffusion driven layer-by-layer assembly" to construct graphene into porous 3-D structures for applications in devices such as batteries and supercapacitors. The new method borrowed a principle from polymer chemistry, known as interfacial complexation, to allow graphene oxide to form a stable composite layer with an oppositely charged polymer.

Scientists synthesize a two-element atomic chain inside a carbon nanotube

October 16, 2014 10:05 am | News | Comments

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology have synthesized an atomic chain in which two elements, cesium and iodine, are aligned alternately inside a carbon nanotube. Analyzed using electron microscopy and spectroscopy, the invention could shed light on the adsorption mechanisms of radioactive elements.

Research reveals unique capabilities of 3-D printing

October 16, 2014 8:51 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Researchers at Oak Ridge National Laboratory have demonstrated an additive manufacturing method to control the structure and properties of metal components with precision unmatched by conventional manufacturing processes. The researchers demonstrated the method using an ARCAM electron beam melting system (EBM), in which successive layers of a metal powder are fused together by an electron beam into a 3-D product.

Advertisement

Electric vehicle technology packs more punch in smaller package

October 15, 2014 8:46 am | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

Using 3-D printing and novel semiconductors, researchers at Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful and more efficient. At the core of this development is wide bandgap material made of silicon carbide with qualities superior to standard semiconductor materials.

Force-sensing microrobots to probe cells

October 14, 2014 7:56 am | by Emil Venere, Purdue Univ. | News | Comments

Inexpensive microrobots capable of probing and manipulating individual cells and tissue for biological research and medical applications are closer to reality with the design of a system that senses the minute forces exerted by a robot's tiny probe. Microrobots small enough to interact with cells already exist. However, there is no easy, inexpensive way to measure the small forces applied to cells by the robots, until now.

The new family portrait? 3-D-printed statue selfies

October 10, 2014 11:52 am | by Peter Svensson, AP Technology Writer | News | Comments

The advent of digital cameras and smartphones killed the traditional mall portrait studio, but 3-D printing has sparked a new trend. Overloaded with digital photos, statues may be moving in to fulfill our desire for portraits that stand out. New York's Museum of Art and Design offered scans and statues earlier this year. Shapeways, the company that supplied the exhibit, scanned about 6,000 people and sold about 1,500 statues for $30.

Snakes and snake-like robots show how sidewinders conquer sandy slopes

October 10, 2014 8:15 am | by John Toon, Georgia Tech and Byron Spice, Carnegie Mellon Univ. | Videos | Comments

The amazing ability of sidewinder snakes to quickly climb sandy slopes was once something biologists only vaguely understood and roboticists only dreamed of replicating. By studying the snakes in a unique bed of inclined sand and using a snake-like robot to test ideas spawned by observing the real animals, both biologists and roboticists have now gained long-sought insights, including how sidewinders effectively traverse sandy slopes.

Droplets made to order

October 7, 2014 9:33 am | by David L. Chandler, MIT | News | Comments

Massachusetts Institute of Technology researchers have developed a new way of creating surfaces on which droplets of any desired shape can spontaneously form. They say this approach could lead to new biomedical assay devices and light-emitting diode display screens, among other applications. The new work represents the first time that scientists can control the shape of the contact area of the droplets.

Fast, cheap nanomanufacturing

October 6, 2014 9:19 am | by Larry Hardesty, MIT | News | Comments

Arrays of tiny conical tips that eject ionized materials are being made at the Massachusetts Institute of Technology. The technology, which harnesses electrostatic forces, has a range of promising applications, such as spinning out nanofibers for use in “smart” textiles or propulsion systems for fist-sized “nanosatellites.” The latest prototype array that generates 10 times the ion current per emitter that previous arrays did.

Online resource provides free tools, simulations for composite materials

October 3, 2014 11:59 am | News | Comments

Individuals in industrial associations, educational institutions and government organizations who are interested in composites, or materials made from constituent materials with different physical or chemical properties, now have free, 24/7 access to simulation tools through an online community with offices in the Purdue Research Park.

Batteries included: A solar cell that stores its own power

October 3, 2014 9:07 am | by Pam Frost Gorder, Ohio State Univ. | News | Comments

The world’s first “solar battery”, invented by researchers at Ohio State Univ., is a battery and a solar cell combined into one hybrid device. Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

Creating nanostructures using simple stamps

October 2, 2014 1:31 pm | News | Comments

Nanostructures of virtually any possible shape can now be made using a combination of techniques developed to exploit the unique properties of so-called perovskites. The group based in the Netherlands, developed a pulsed laser deposition technique to create patterns in ultra thin layers, one atomic layer at a time. The perovskites’ crystal structure is undamaged by this soft lithography technique, maintaining electrical conductivity.

Ultrafast remote switching of light emission

October 1, 2014 9:15 am | News | Comments

Researchers in the Netherlands can now, for the first time, remotely control a miniature light source at timescales of 200 trillionths of a second. Physicists have developed a way of remotely controlling the nanoscale light sources at an extremely short timescale. These light sources are needed to be able to transmit quantum information.

Scientists improve microscopic batteries with homebuilt imaging analysis

September 29, 2014 12:26 pm | News | Comments

In a rare case of having their cake and eating it too, scientists from NIST and other institutions have developed a toolset that allows them to explore the complex interior of tiny, multi-layered batteries they devised. It provides insight into the batteries’ performance without destroying them, which results in both a useful probe for scientists and a potential power source for micromachines.

New technology may lead to prolonged power in mobile devices

September 29, 2014 8:40 am | News | Comments

Researchers from the Univ. of Texas at Dallas have created technology that could be the first step toward wearable computers with self-contained power sources or, more immediately, a smartphone that doesn’t die after a few hours of heavy use. This technology  taps into the power of a single electron to control energy consumption inside transistors, which are at the core of most modern electronic systems.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading