Advertisement
Manufacturing
Subscribe to Manufacturing

The Lead

Manufacturing process could yield better solar cells, faster chips

March 25, 2015 10:57 am | by Tom Abate, Stanford Engineering | Videos | Comments

Computer chips, solar cells and other electronic devices have traditionally been based on silicon, the most famous of the semiconductors, that special class of materials whose unique electronic properties can be manipulated to turn electricity on and off the way faucets control the flow of water. There are other semiconductors. Gallium arsenide is one such material and it has certain technical advantages over silicon.

Snake robots learn to turn by following real sidewinders’ lead

March 25, 2015 7:59 am | by John Toon, Georgia Institute of Technology | News | Comments

Researchers at Carnegie Mellon Univ. (CMU) who develop snake-like robots have picked up a few...

New technique could bring quality-control tool for nanocomposites

March 23, 2015 4:10 pm | by Emil Venere, Purdue Univ. | News | Comments

Layered nanocomposites containing tiny structures mixed into a polymer matrix are gaining...

Artificial intelligence systems more apt to fail than destroy

March 23, 2015 1:52 pm | by David Stauth, Oregon State Univ. | News | Comments

The most realistic risks about the dangers of artificial intelligence are basic mistakes,...

View Sample

FREE Email Newsletter

Rare-earth innovation to improve nylon manufacturing

March 19, 2015 8:56 am | by Laura Millsaps, Ames Laboratory Public Affairs | News | Comments

The Critical Materials Institute has created a new chemical process that makes use of the widely available rare-earth metal cerium to improve the manufacture of nylon. The process uses a cerium-based material made into nanometer-sized particles with a palladium catalyst to produce cyclohexanone, a key ingredient in the production of nylon.

Cool process to make better graphene

March 18, 2015 8:05 am | by Ker Than, Caltech | News | Comments

A new technique invented at Caltech to produce graphene at room temperature could help pave the way for commercially feasible graphene-based solar cells and LEDs, large-panel displays and flexible electronics. With the new technique, researchers can grow large sheets of electronic-grade graphene in much less time and at much lower temperatures.

A call to change recycling standards as 3D printing expands

March 17, 2015 4:31 pm | by Allison Mills, Michigan Technological Univ. | News | Comments

The 3D printing revolution has changed the way we think about plastics. Everything from children’s toys to office supplies to high-value laboratory equipment can be printed. The potential savings of producing goods at the household- and lab-scale is remarkable, especially when producers use old prints and recycle them.

Advertisement

Researchers collaborate to develop revolutionary 3D printing technology

March 17, 2015 10:30 am | by Univ. of North Carolina, Chapel Hill | Videos | Comments

A 3D printing technology developed by Silicon Valley startup, Carbon3D Inc., enables objects to rise from a liquid media continuously rather than being built layer-by-layer as they have been for the past 25 years, representing a fundamentally new approach to 3D printing. The technology allows ready-to-use products to be made 25 to 100 times faster than other methods.

Additive manufacturing could greatly improve diabetes management

March 17, 2015 8:55 am | by David Stauth, Oregon State Univ. | News | Comments

Engineers at Oregon State Univ. have used additive manufacturing to create an improved type of glucose sensor for patients with Type 1diabetes, part of a system that should work better, cost less and be more comfortable for the patient. A key advance is use of electrohydrodynamic jet, or “e-jet” printing, to make the sensor.

How 3-D bioprinting could address the shortage of organ donations

March 12, 2015 7:49 am | by American Chemical Society | News | Comments

Three-dimensional bioprinting has come a long way since its early days when a bioengineer replaced the ink in his desktop printer with living cells. Scientists have since successfully printed small patches of tissue. Could it someday allow us to custom-print human organs for patients in need of transplants?

3-D Printing Blasts Off

March 6, 2015 9:55 am | by Lindsay Hock, Editor | Videos | Comments

3-D printing isn’t just a commodity on Earth, it’s now also a commodity in space. In November 2014, the first 3-D printer in space created its first object, albeit self-fulfilling, a replacement faceplate for the printer’s casing that holds its internal wiring in place.

High-precision radar for the steel industry

March 2, 2015 8:42 am | by Fraunhofer-Gesellschaft | News | Comments

Steel is the most important material in vehicle and machinery construction. Large quantities of offcuts and scraps are left over from rolling and milling crude steel into strip steel. New radar from Fraunhofer researchers measures the width of the strip during fabrication to an accuracy of micrometers and helps to minimize scrap.

Advertisement

Innovative wireless sensor technology yields better energy efficiency

March 2, 2015 8:17 am | by Sara Shoemaker, Oak Ridge National Laboratory | News | Comments

Regulating comfort in small commercial buildings could become more efficient and less expensive thanks to an innovative low-cost wireless sensor technology being developed by researchers at Oak Ridge National Laboratory. Buildings are responsible for about 40% of the energy consumed in the U.S. Studies indicate that advanced sensors and controls have the potential to reduce the energy consumption of buildings by 20 to 30%.

3-D printed parts to provide low-cost, custom alternatives for lab equipment

February 27, 2015 10:14 am | by Raphael Rosen, Princeton Plasma Physics Laboratory Communications | News | Comments

The 3-D printing scene, a growing favorite of do-it-yourselfers, has spread to the study of plasma physics. With a series of experiments, researchers at the Princeton Plasma Physics Laboratory have found that 3-D printers can be an important tool in laboratory environments.

The Difference Between Research and Development

February 24, 2015 9:34 am | by Bradford L. Goldense, President, Goldense Group Inc., Needham, Mass. | Articles | Comments

The already unclear lines separating research from development are getting even blurrier as more companies allocate some part of their R&D budget to take on riskier projects, and invest in the necessary infrastructure to manage these riskier activities. New products are now being launched out of recently formed "Innovation" organizations", and more are coming from existing “Advanced Development" organizations.

Building tailor-made DNA nanotubes step-by-step

February 24, 2015 8:10 am | by McGill Univ. | News | Comments

Researchers at McGill Univ. have developed a new, low-cost method to build DNA nanotubes block-by-block, a breakthrough that could help pave the way for scaffolds made from DNA strands to be used in applications such as optical and electronic devices or smart drug delivery systems. Many researchers, including the McGill team, have previously constructed nanotubes using a method that relies on spontaneous assembly of DNA in solution.

3-D printed guides can help restore function in damaged nerves

February 23, 2015 11:00 am | by Abigail Chard, Univ. of Sheffield | News | Comments

Scientists at the Univ. of Sheffield have succeeded in using a 3-D printed guide to help nerves damaged in traumatic incidents repair themselves. The team used the device to repair nerve damage in animal models and say the method could help treat many types of traumatic injury.

Advertisement

New technique developed for making graphene competitor, molybdenum disulphide

February 20, 2015 7:59 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Graphene is often touted as a replacement for silicon in electronic devices due to its extremely high conductivity and unbeatable thinness. But graphene isn’t the only 2-D material that could play such a role. Univ. of Pennsylvania researchers have made an advance in manufacturing one such material, molybdenum disulphide.

Shape-shifting groups of nanorods release heat differently

February 19, 2015 9:11 am | by Justin H.S. Breaux, Argonne National Laboratory | News | Comments

Researchers have revealed previously unobserved behaviors that show how details of the transfer of heat at the nanoscale cause nanoparticles to change shape in ensembles.

Novel crumpling method takes flat graphene from 2-D to 3-D

February 18, 2015 7:54 am | by Rick Kubetz, Univ. of Illinois, Urbana-Champaign | News | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have developed a unique single-step process to achieve 3-D texturing of graphene and graphite. Using a commercially available thermally activated shape-memory polymer substrate, this 3-D texturing, or "crumpling," allows for increased surface area and opens the doors to expanded capabilities for electronics and biomaterials.

3-D Printing Blasts Off, Explodes Into the Future

February 13, 2015 1:15 pm | by Lindsay Hock, Editor | Articles | Comments

In 2013, battle lines were drawn. Two stark competitors were looking to speed repairs and cut costs on parts for gas turbines. First to the drawing board was GE, who started using 3-D printing technology at its Global Research Center in Niskayuna, N.Y., to produce more than 85,000 fuel nozzles for its anticipated LEAP engine technology.

Silver-glass sandwich structure acts as inexpensive color filter

February 13, 2015 10:37 am | by Amanda Morris, Northwestern Univ. | News | Comments

The engineering world just became even more colorful. Northwestern Univ. researchers have created a new technique that can transform silver into any color of the rainbow. Their simple method is a fast, low-cost alternative to color filters currently used in electronic displays and monitors.

Insight into how rubber is made could improve tires, reduce air pollution

February 13, 2015 8:44 am | by American Chemical Society | News | Comments

People have been making rubber products from elastic bands to tires for centuries, but a key step in this process has remained a mystery. In a report, scientists have described this elusive part of rubber production that could have major implications for improving the material and its uses. Their findings, if used to improve tire performance, for example, could mean higher gas mileage for consumers and less air pollution.

Synthetic DNA Gel Key to Printing Organs

February 12, 2015 7:00 am | by Heriot-Watt Univ. | News | Comments

A two-part water-based gel made of synthetic DNA could bring the inventors of a 3-D bio printer closer to being able to print organs for transplant, or to replace animal testing. They faced two main challenges: finding a matrix or scaffold to support the live cells in 3-D, and being able to produce a consistent product which would not be rejected by transplant recipients.

3D printing with custom molecules creates low-cost mechanical sensor

February 10, 2015 8:03 am | by Hannah Hickey, Univ. of Washington | News | Comments

Imagine printing out molecules that can respond to their surroundings. A research project at the Univ. of Washington merges custom chemistry and 3D printing. Scientists created a bone-shaped plastic tab that turns purple under stretching, offering an easy way to record the force on an object.

New tool monitors effects of tidal, wave energy on marine habitat

February 6, 2015 12:07 pm | by Michelle Ma, Univ. of Washington | Videos | Comments

Researchers building a new underwater robot they’ve dubbed the “Millennium Falcon” certainly have reason to believe it will live up to its name. The robot will deploy instruments to gather information in unprecedented detail about how marine life interacts with underwater equipment used to harvest wave and tidal energy.

Precision growth of light-emitting nanowires

February 6, 2015 9:12 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

A novel approach to growing nanowires promises a new means of control over their light-emitting and electronic properties. In a recent issue of Nano Letters, scientists from Lawrence Berkeley National Lab demonstrated a new growth technique that uses specially engineered catalysts. These catalysts, which are precursors to growing the nanowires, have given scientists more options than ever in turning the color of light-emitting nanowires.

Human insights inspire solutions for household robots

February 5, 2015 11:12 am | by Aaron Dubrow, NSF | News | Comments

People typically consider doing the laundry to be a boring chore. But laundry is far from boring for artificial intelligence (AI) researchers. To AI experts, programming a robot to do the laundry represents a challenging planning problem because current sensing and manipulation technology is not good enough to identify precisely the number of clothing pieces that are in a pile and the number that are picked up with each grasp.

Octopus robot makes waves with ultra-fast propulsion

February 5, 2015 10:47 am | by Glenn Harris, Univ. of Southampton | Videos | Comments

Scientists have developed an octopus-like robot, which can zoom through water with ultra-fast propulsion and acceleration never before seen in man-made underwater vehicles. Most fast aquatic animals are sleek and slender to help them move easily through the water but cephalopods, such as the octopus, are capable of high-speed escapes by filling their bodies with water and then quickly expelling it to dart away.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading