Advertisement
Life Sciences
Subscribe to Life Sciences

The Lead

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell

April 23, 2014 8:59 am | by Natalie van Hoose, Purdue Univ. | News | Comments

A team at Purdue Univ. has used gold nanoparticles to target and bind to fragments of genetic material known as BRCA1 messenger RNA splice variants, which can indicate the presence and stage of breast cancer. The number of these synthetic DNA “tails” in a cell can be determined in a living cell by examining the specific signal that light produces when it interacts with the gold nanoparticles.

Study identifies enzymes that help fix cancer-causing DNA defects

April 23, 2014 7:47 am | by Natalie van Hoose, Purdue Univ. | News | Comments

Purdue Univ. researchers have identified an important enzyme pathway that helps prevent new...

Study: New patenting guidelines are needed for biotechnology

April 23, 2014 7:34 am | News | Comments

Biotechnology scientists must be aware of the broad patent landscape and push for new patent and...

Michigan man among first in U.S. to get "bionic eye"

April 23, 2014 3:20 am | by Mike Householder - Associated Press - Associated Press | News | Comments

Diagnosed with a degenerative eye disease as a teenager, Roger Pontz has been almost completely...

View Sample

FREE Email Newsletter

April 2014 Issue of R&D Magazine

April 22, 2014 2:16 pm | Digital Editions | Comments

This month's issue of R&D Magazine focuses on laboratory instrumentation, with our cover story on laboratory utilities for R&D facilities. Our editors also take a look at new spectrometer introductions, simulation software, particle analysis in drug delivery, 3-D printing technology, OEM optics for spectrometers and chromatography systems.

Cloaked DNA nanodevices survive pilot mission

April 22, 2014 9:13 am | by Dan Ferber, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at Harvard Univ.'s Wyss Institute for Biologically Inspired Engineering have mimicked these viral tactics to build the first DNA nanodevices that survive the body's immune defenses.

Fast way to measure DNA repair

April 22, 2014 8:55 am | by Anne Trafton, MIT News Office | News | Comments

Our DNA is under constant attack from many sources. Fortunately, cells have several major DNA repair systems that can fix this damage, which may lead to diseases if not mended. A team of researchers has developed a test that can rapidly assess several DNA repair systems, which could help determine individuals’ risk of developing cancer and help doctors predict how a given patient will respond to chemotherapy drugs.

Advertisement

Researchers demonstrate first size-based chromatography technique for the study of living cells

April 22, 2014 7:58 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Using nanodot technology, Lawrence Berkeley National Laboratory researchers have demonstrated the first size-based form of chromatography that can be used to study the membranes of living cells. This unique physical approach to probing cellular membrane structures can reveal information critical to whether a cell lives or dies, remains normal or turns cancerous, that can’t be obtained through conventional microscopy.

Students take clot-buster for a spin

April 22, 2014 7:46 am | Videos | Comments

In the hands of some Rice Univ. senior engineering students, a fishing rod is more than what it seems. For them, it’s a way to help destroy blood clots that threaten lives. Branding themselves as “Team Evacuator,” five students have been testing a device to break up blood clots that form in the bladders of adult patients and currently have to be removed by suction through a catheter in the urethra.

Tracking oxygen in the body

April 22, 2014 7:34 am | by Anne Trafton, MIT News Office | News | Comments

Unlike healthy cells, cancer cells thrive when deprived of oxygen. Tumors in low-oxygen environments tend to be more resistant to therapy and spread more aggressively to other parts of the body. Measuring tumors’ oxygen levels could help doctors make decisions about treatments, but there’s currently no way to make such measurements. However, a new sensor developed at Massachusetts Institute of Technology could change that.

Physicist creates new nanoparticle for cancer therapy

April 21, 2014 3:06 pm | News | Comments

Physicist Wei Chen at Univ. of Texas at Arlington’s Center for Security Advances Via Applied Nanotechnology was testing a copper-cysteamine complex created in his laboratory when he discovered unexplained decreases in its luminescence, or light emitting power, over a time-lapse exposure to x-rays. Further testing work revealed that the “Cu-Cy” nanoparticles, when combined with x-ray exposure, significantly slowed tumor growth in studies.

MRI, on a molecular scale

April 21, 2014 8:51 am | by Peter Reuell, Harvard Univ. | News | Comments

A team of scientists, led by physicist Amir Yacoby of Harvard Univ., has developed a magnetic resonance imaging (MRI) system that can produce nanoscale images, and may one day allow researchers to peer into the atomic structure of individual molecules. Though not yet precise enough to capture atomic-scale images of a single molecule, the system already has been used to capture images of single electron spins.

Advertisement

Unlocking a mystery of human disease in space

April 21, 2014 7:45 am | by Jessica Stoller-Conrad, Caltech | News | Comments

Huntington's disease is a grim diagnosis. A hereditary disorder with debilitating physical and cognitive symptoms, the disease usually robs adult patients of their ability to walk, balance and speak. More than 15 years ago, researchers revealed the disorder's likely cause—an abnormal version of the protein huntingtin; however, the mutant protein's mechanism is poorly understood, and the disease remains untreatable.

Hawaii is genetically engineered crop flash point

April 19, 2014 10:20 am | by Audrey Mcavoy - Associated Press - Associated Press | News | Comments

You can trace the genetic makeup of most corn grown in the U.S., and in many other places around the world, to Hawaii. The tiny island state 2,500 miles from the nearest continent is so critical to the nation's modern corn-growing business that the industry's leading companies all have farms here, growing new varieties genetically engineered for desirable traits like insect and drought resistance.

Pocket-sized anthrax detector aids global agriculture

April 18, 2014 8:36 am | by Stephanie Holinka, Sandia National Laboratories | News | Comments

A credit-card-sized anthrax detection cartridge developed at Sandia National Laboratories and recently licensed to a small business makes testing safer, easier, faster and cheaper. Bacillus anthracis, the bacteria that causes anthrax, is commonly found in soils all over the world and can cause serious, and often fatal, illness in both humans and animals.

Multi-target TB drug could treat other disease, evade resistance

April 18, 2014 7:47 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

A drug under clinical trials to treat tuberculosis could be the basis for a class of broad-spectrum drugs that act against various bacteria, fungal infections and parasites, yet evade resistance, according to a study by Univ. of Illinois chemists and collaborators. The team determined the different ways the drug SQ109 attacks the tuberculosis bacterium and how the drug can be tweaked to target other pathogens from yeast to malaria.

Proper stem cell function requires hydrogen sulfide

April 17, 2014 3:02 pm | by Beth Newcomb, USC | News | Comments

A new study has discovered that stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue. The presence of hydrogen sulfide produced by the cells governs the flow of calcium ions, which activates a chain of cellular signals that results in osteogenesis, or the creation of new bone tissue, and keeps the breakdown of old bone tissue at a proper level.

Advertisement

The trials of the Cherokee were reflected in their skulls

April 17, 2014 12:00 pm | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these cells individually take on their own unique forms, a team sought to pinpoint the shape-controlling factors in pavement cells, which are puzzle-piece-shaped epithelial cells found on the leaves of flowering plants.

For cells, internal stress leads to unique shapes

April 17, 2014 11:54 am | by Jessica Stoller-Conrad, Caltech | News | Comments

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these cells individually take on their own unique forms, a Caltech team sought to pinpoint the shape-controlling factors in pavement cells, which are puzzle-piece-shaped epithelial cells found on the leaves of flowering plants.

Researchers develop new antiviral drug to combat measles outbreaks

April 17, 2014 7:57 am | News | Comments

A novel antiviral drug may protect people infected with the measles from getting sick and prevent them from spreading the virus to others, an international team of researchers says. The team of researchers developed the drug and tested it in animals infected with a virus closely related to one that causes the measles. As reported, virus levels were significantly reduced when infected animals received the drug by mouth.

Bionic ankle “emulates nature”

April 17, 2014 7:41 am | by Rob Matheson, MIT News Office | News | Comments

These days, Hugh Herr, an assoc. prof. of media arts and sciences at Massachusetts Institute of Technology, gets about 100 emails daily from people across the world interested in his bionic limbs. Messages pour in from amputees seeking prostheses and from media outlets pursuing interviews. Then there are students looking to join Herr’s research group.

Study: Diabetic heart attacks and strokes falling

April 16, 2014 5:23 pm | by Mike Stobbe - AP Medical Writer - Associated Press | News | Comments

In the midst of the diabetes epidemic, a glimmer of good news: Heart attacks, strokes and other complications from the disease are plummeting. Over the last two decades, the rates of heart attacks and strokes among diabetics fell by more than 60%, a new federal study shows. The research also confirms earlier reports of drastic declines in diabetes-related kidney failure and amputations.

New technique will accelerate genetic characterization of photosynthesis

April 16, 2014 9:12 am | News | Comments

A type of single-cell green algae called Chlamydomonas reinhardtii is a leading subject for photosynthesis research, but few tools are available for characterizing the functions of its genes. A team including Carnegie Institution's Martin Jonikas has developed a highly sophisticated tool that will transform the work of plant geneticists by making large-scale genetic characterization of Chlamydomonas mutants possible for the first time.

Potent, puzzling and (now less) toxic: Team discovers how antifungal drug works

April 15, 2014 5:18 pm | by Diana Yates, Univ. of Illinois | News | Comments

Scientists have solved a decades-old medical mystery, and in the process have found a potentially less toxic way to fight invasive fungal infections, which kill about 1.5 million people a year. The researchers say they now understand the mechanism of action of amphotericin, an antifungal drug that has been in use for more than 50 years even though it is nearly as toxic to human cells as it is to the microbes it attacks.

Astronomers: ‘Tilt-a-worlds’ could harbor life

April 15, 2014 3:17 pm | by Peter Kelley, Univ. of Washington | News | Comments

A fluctuating tilt in a planet’s orbit does not preclude the possibility of life, according to new research by a team of astronomers. In fact, sometimes it helps because such “tilt-a-worlds,” as astronomers sometimes call them, are less likely than fixed-spin planets to freeze over, as heat from their host star is more evenly distributed.

Nanocrystalline cellulose modified into an efficient viral inhibitor

April 15, 2014 11:38 am | News | Comments

Researchers in Finland have succeeded in creating a surface on nano-sized cellulose crystals that imitates a biological structure. The surface adsorbs viruses and disables them, preventing their spread into cells. The results could prove useful in the development of antiviral ointments and surfaces.

A Spectral Overview

April 15, 2014 9:56 am | by Lindsay Hock, Managing Editor | Thermo Fisher Scientific, Ocean Optics, Shimadzu Scientific Instruments | Articles | Comments

Spectroscopy is an analytical technique used to identify and determine the physical characteristics of materials through the measurement of emissions and absorption of electromagnetic spectra. A staple in any research laboratory, the technique makes its main home in pharmaceutical, biotechnology and chemical laboratories.

Characterizing Liposomes for Drug Delivery

April 15, 2014 9:38 am | by Pauline Carnell, Senior Application Scientist and Mike Kaszuba, Technical Support Manager, Malvern Instruments, Malvern, U.K | Articles | Comments

When considering potential drug delivery vehicles, liposomes are an important option and have already been approved for use with a number of therapeutic formulations. Liposomes are comprised of phospholipids and may be single- or multi-layered, can be produced in different sizes and have a hydrophilic interior and hydrophobic shell. They are biodegradable, non-toxic and capable of encapsulating both hydrophilic and hydrophobic materials.

Nano shake-up: Nanocarriers fluctuate in size and shape

April 15, 2014 9:26 am | by Diane Kukich, Univ. of Delaware | News | Comments

Nanotechnology has unlocked new pathways for targeted drug delivery, including the use of nanocarriers that can transport cargoes of small-molecule therapeutics to specific locations in the body. Researchers have recently demonstrated that processing can have significant influence on the size of nanocarriers for targeted drug delivery. It was previously assumed that once a nanocarrier is created, it maintains its size and shape anywhere.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading