Advertisement
Information Technologies
Subscribe to Information Technologies
View Sample

FREE Email Newsletter

Harnessing the power of drones to assess disaster damage

February 5, 2015 9:38 am | by Michael Price, San Diego State Univ. | News | Comments

When disaster strikes, it's important for responders and emergency officials to know what critical infrastructure has been damaged so they can direct supplies and resources accordingly. Doug Stow, a geography professor from San Diego State Univ., is developing a program that uses before-and-after aerial imagery to reveal infrastructure damage in a matter of minutes.

Programming safety into self-driving cars

February 4, 2015 11:21 am | by Aaron Dubrow, NSF | News | Comments

For decades, researchers in artificial intelligence, or AI, worked on specialized problems, developing theoretical concepts and workable algorithms for various aspects of the field. Computer vision, planning and reasoning experts all struggled independently in areas that many thought would be easy to solve, but which proved incredibly difficult.

Rediscovering spontaneous light emission

February 4, 2015 8:06 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Lawrence Berkeley National Laboratory researchers have developed a nano-sized optical antenna that can greatly enhance the spontaneous emission of light from atoms, molecules and semiconductor quantum dots. This advance opens the door to light-emitting diodes (LEDs) that can replace lasers for short-range optical communications, including optical interconnects for microchips, plus a host of other potential applications.

Advertisement

One-atom-thin silicon transistors hold promise for super-fast computing

February 4, 2015 7:50 am | by Sandra Zaragoza, The Univ. of Texas at Austin | News | Comments

Researchers at The Univ. of Texas at Austin have created the first transistors made of silicene, the world’s thinnest silicon material. Their research holds the promise of building dramatically faster, smaller and more efficient computer chips. Made of a one-atom-thick layer of silicon atoms, silicene has outstanding electrical properties but has until now proved difficult to produce and work with.

Technique doubles the distance of optical fiber communications

February 3, 2015 8:34 am | by Rebecca Caygill, Univ. College London | News | Comments

A new way to process fiber optic signals has been demonstrated by Univ. College London researchers, which could double the distance at which data travels error-free through transatlantic submarine cables. The new method has the potential to reduce the costs of long-distance optical fiber communications as signals wouldn’t need to be electronically boosted on their journey.

Using a single molecule to create a new magnetic field sensor

January 30, 2015 9:16 am | by Univ. of Liverpool | News | Comments

Researchers at the Univ. of Liverpool and Univ. College London have shown a new way to use a single molecule as a magnetic field sensor. In a study, published in Nature Nanotechnology, the team shows how magnetism can manipulate the way electricity flows through a single molecule, a key step that could enable the development of magnetic field sensors for hard drives that are a tiny fraction of their present size.

Building trustworthy big data algorithms

January 30, 2015 8:41 am | by Emily Ayshford, Northwestern Univ. | News | Comments

Much of our reams of data sit in large databases of unstructured text. Finding insights among emails, text documents and Websites is extremely difficult unless we can search, characterize and classify their text data in a meaningful way. One of the leading big data algorithms for finding related topics within unstructured text (an area called topic modeling) is latent Dirichlet allocation (LDA).

Parallelizing common algorithms

January 30, 2015 8:28 am | by Larry Hardesty, MIT News Office | News | Comments

Every undergraduate computer science major takes a course on data structures, which describes different ways of organizing data in a computer’s memory. Every data structure has its own advantages: Some are good for fast retrieval, some for efficient search, some for quick insertions and deletions and so on. Today, hardware manufacturers are making computer chips faster by giving them more cores, or processing units.

Advertisement

Eyeglasses that turn into sunglasses

January 29, 2015 3:52 pm | by American Chemical Society | News | Comments

Imagine eyeglasses that can go quickly from clear to shaded and back again when you want them to, rather than passively in response to changes in light. Scientists report a major step toward that goal, which could benefit pilots, security guards and others who need such control, in ACS Applied Materials & Interfaces.

Qubits with staying power

January 29, 2015 3:41 pm | by Larry Hardesty, MIT News Office | News | Comments

Quantum computers are experimental devices that promise exponential speedups on some computational problems. Where a bit in a classical computer can represent either a 0 or a 1, a quantum bit, or qubit, can represent 0 and 1 simultaneously, letting quantum computers explore multiple problem solutions in parallel. But such “superpositions” of quantum states are, in practice, difficult to maintain.

Quantum computer as detector shows space isn’t squeezed

January 29, 2015 10:42 am | by Robert Sanders, Univ. of California, Berkeley Media Relations | News | Comments

Ever since Einstein proposed his special theory of relativity in 1905, physics and cosmology have been based on the assumption that space looks the same in all directions: that it’s not squeezed in one direction relative to another. A new experiment by Univ. of California, Berkeley physicists used partially entangled atoms to demonstrate more precisely than ever before that this is true, to one part in a billion billion.

Nanoscale mirrored cavities amplify, connect quantum memories

January 28, 2015 8:11 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

The idea of computing systems based on controlling atomic spins just got a boost from new research performed at MIT and Brookhaven National Laboratory. By constructing tiny "mirrors" to trap light around impurity atoms in diamond crystals, the team dramatically increased the efficiency with which photons transmit information about those atoms' electronic spin states, which can be used to store quantum information.

Hybrid memory device for superconducting computing

January 26, 2015 12:20 pm | by NIST | News | Comments

Scientists have demonstrated a nanoscale memory technology for superconducting computing that could hasten the advent of an urgently awaited, low-energy alternative to power-hungry conventional data centers and supercomputers. In recent years, the stupendous and growing data demands of cloud computing, expanded Internet use, mobile device support and other applications have prompted the creation of large, centralized computing facilities.

Advertisement

Climate models disagree on why temperature “wiggles” occur

January 26, 2015 11:06 am | by Duke Univ. | News | Comments

A new study finds that most climate models likely underestimate the degree of decade-to-decade variability occurring in mean surface temperatures as Earth's atmosphere warms. The models also provide inconsistent explanations of why this variability occurs in the first place. These discrepancies may undermine the models' reliability for projecting the short-term pace as well as the extent of future warming, the study's authors warn.

Researchers identify materials to improve biofuel, petroleum processing

January 26, 2015 10:57 am | by Univ. of Minnesota | News | Comments

Using one of the largest supercomputers in the world, a team of researchers led by the Univ. of Minnesota has identified potential materials that could improve the production of ethanol and petroleum products. The discovery could lead to major efficiencies and cost savings in these industries. The Univ. of Minnesota has two patents pending on the research and hopes to license these technologies.

Possible drone found on White House grounds

January 26, 2015 9:17 am | by Nedra Pickler, Associated Press | News | Comments

A device, possibly an unmanned aerial drone, was found on the White House grounds during the middle of the night while President Barack Obama and the first lady were in India, but his spokesman said today that it posed no threat. It was unclear whether their daughters, Sasha and Malia, were at home at the time of the incident with their grandmother, Marian Robinson, who also lives at the White House.

Entanglement on a chip

January 26, 2015 9:12 am | by Lyndsay Meyer, The Optical Society | News | Comments

Unlike Bilbo's magic ring, which entangles human hearts, engineers have created a new microring that entangles individual particles of light, an important first step in a whole host of new technologies. Entanglement is one of the most intriguing and promising phenomena in all of physics. Properly harnessed, entangled photons could revolutionize computing, communications and cyber security.

How cancer turns good cells to the dark side

January 26, 2015 8:38 am | by Mike Williams, Rice Univ. | News | Comments

Cancer uses a little-understood element of cell signaling to hijack the communication process and spread, according to Rice Univ. researchers. A new computational study by researchers at the Rice-based Center for Theoretical Biological Physics shows how cancer cells take advantage of the system by which cells communicate with their neighbors as they pass messages to “be like me” or “be not like me.”

Improvements in transistors will make flexible plastic computers a reality

January 26, 2015 8:11 am | by National Institute for Materials Science | News | Comments

Researchers in Japan revealed that improvements should soon be expected in the manufacture of transistors that can be used, for example, to make flexible, paper-thin computer screens. The scientists reviewed the latest developments in research on photoactive organic field-effect transistors, devices that incorporate organic semiconductors, amplify weak electronic signals and either emit or receive light.

Structure control unlocks magnetization, polarization simultaneously

January 26, 2015 7:53 am | by Univ. of Liverpool | News | Comments

Scientists at the Univ. of Liverpool have controlled the structure of a material to simultaneously generate both magnetization and electrical polarization, an advance which has potential applications in information storage and processing. The researchers demonstrated that it's possible to unlock these properties in a material which initially displayed neither by making designed changes to its structure.

Navy wants to increase use of sonar-emitting buoys

January 25, 2015 12:18 pm | by Phuong Le, Associated Press | News | Comments

The U.S. Navy is seeking permits to expand sonar and other training exercises off the Pacific Coast, a proposal raising concerns from animal advocates who say that more sonar-emitting buoys would harm whales and other creatures that live in the water. The Navy wants to deploy up to 720 sonobuoys at least 12 nautical miles off the coasts of Washington, Oregon and Northern California.

Infrared imaging technique operates at high temperatures

January 23, 2015 4:19 pm | by Amanda Morris, Northwestern Univ. | News | Comments

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming more attractive. Currently, commercial technologies for MWIR detection can only operate at cryogenic temperatures in order to reduce thermal and electrical noise.

“Predicted” zeolites may fuel efficient processes

January 23, 2015 8:45 am | by Mike Williams, Rice Univ. | News | Comments

Scientists have identified synthetic materials that may purify ethanol more efficiently and greatly improve the separation of long-chain hydrocarbons in petroleum refining. The results show that predictive modeling of synthetic zeolites is highly effective and can help solve some of the most challenging problems facing industries that require efficient ways to separate or catalyze materials.

Scientists set quantum speed limit

January 23, 2015 8:01 am | by Robert Sanders, Univ. of California, Berkeley Media Relations | News | Comments

Scientists have proved a fundamental relationship between energy and time that sets a “quantum speed limit” on processes ranging from quantum computing and tunneling to optical switching. The energy-time uncertainty relationship is the flip side of the Heisenberg uncertainty principle, which sets limits on how precisely you can measure position and speed, and has been the bedrock of quantum mechanics for nearly 100 years.

Predicting the behavior of new concrete formulas

January 22, 2015 8:39 am | by Chad Boutin, NIST | News | Comments

Just because concrete is the most widely used building material in human history doesn’t mean it can’t be improved. A recent study conducted by researchers from NIST, the Univ. of Strasbourg and Sika Corp. using U.S. Dept. of Energy Office of Science supercomputers has led to a new way to predict concrete’s flow properties from simple measurements.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading