Advertisement
Information Technologies
Subscribe to Information Technologies
View Sample

FREE Email Newsletter

Nanotechnology leads to better, cheaper LEDs for phones and lighting

September 24, 2014 10:57 am | by John Sullivan, Princeton Univ. | News | Comments

Princeton Univ. researchers have developed a new method to increase the power and clarity of light-emitting diodes (LEDs). Using a new nanoscale structure made from flexible carbon-based sheet, the researchers increased the brightness and efficiency of LEDs made of organic materials by 57%.

Low-cost, “green” transistor heralds advance in flexible electronics

September 24, 2014 10:02 am | News | Comments

As tech company LG demonstrated this summer with the unveiling of its 18-in flexible screen, the next generation of roll-up displays is tantalizingly close. Researchers are now reporting a new, inexpensive and simple way to make transparent, flexible transistors that could help bring roll-up smartphones with see-through displays and other bendable gadgets to consumers in just a few years.

Island to get first German drone delivery service

September 24, 2014 9:49 am | News | Comments

Deutsche Post DHL says it is starting Germany's first drone package delivery service, a test program transporting medicine to a pharmacy on a North Sea island. The company said the quad-rotor "DHL Paketkopter 2.0" will begin daily flights Friday, bringing a maximum load of 1.2 kg of medicine to the German island of Juist.

Advertisement

Magnetic field opens and closes nanovesicle

September 24, 2014 9:18 am | Videos | Comments

Researchers in the Netherlands have managed to open nanovesicles in a reversible process and close them using a magnet. Previously, these vesicles had been “loaded” with a drug and opened elsewhere using a chemical process, such as osmosis. The magnetic method, which is repeatable, is the first to demonstrate the viability of another method.

Mission accomplished: India joins Mars explorers

September 24, 2014 8:58 am | by Katy Daigle, Associated Press | News | Comments

India triumphed in its first interplanetary mission, placing a satellite into orbit around Mars on Wednesday and catapulting the country into an elite club of deep-space explorers. In scenes broadcast live on Indian TV, scientists broke into wild cheers as the orbiter's engines completed 24 min of burn time to maneuver the spacecraft into its designated place around the red planet.

Nuclear spins control electrical currents

September 23, 2014 2:47 pm | by Katherine Kornei | News | Comments

An international team of physicists has shown that information stored in the nuclear spins of hydrogen isotopes in an organic light-emitting diode (LED) or organic LED can be read out by measuring the electrical current through the device. Unlike previous schemes that only work at ultracold temperatures, this is the first to operate at room temperature, and could be used to create extremely dense and highly energy-efficient memory devices.

New properties found in promising oxide ceramics for reactor fuels

September 23, 2014 2:14 pm | News | Comments

Nanocomposite oxide ceramics have potential uses as ferroelectrics, fast ion conductors, and nuclear fuels and for storing nuclear waste, generating a great deal of scientific interest on the structure, properties, and applications of these blended materials. Los Alamos National Laboratory researchers have made the first observations of the relationship between the chemistry and dislocation structures of the nanoscale interfaces.

New formulation leads to improved liquid battery

September 23, 2014 2:07 pm | by David L. Chandler, MIT | News | Comments

Donald Sadoway and his colleagues at the Massachusetts Institute of Technology have already started a company to produce electrical-grid-scale liquid batteries, whose layers of molten material automatically separate due to their differing densities. But a newly developed formula substitutes different metals for the molten layers. The new formula allows the battery to work at a much lower temperature.

Advertisement

Engineers show light can play seesaw at the nanoscale

September 23, 2014 9:41 am | News | Comments

Univ. of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The tiny device is just .7 micrometers by 50 micrometers and works almost like a seesaw. On each side of the “seesaw benches,” researchers etched an array of holes, called photonic crystal cavities. These cavities capture photons that streamed from a nearby source.

A molecule in an optical whispering gallery

September 23, 2014 9:19 am | News | Comments

Using an optical microstructure and gold nanoparticles, scientists have amplified the interaction of light with DNA to the extent that they can now track interactions between individual DNA molecule segments. In doing so, they have approached the limits of what is physically possible. This optical biosensor for single unlabelled molecules could also be a breakthrough in the development of biochips:

Program predicts placement of chemical tags that control gene activity

September 22, 2014 9:20 am | by Susan Brown, Univ. of California, San Diego | News | Comments

Biochemists in California have developed a program that predicts the placement of chemical marks that control the activity of genes based on sequences of DNA. By comparing sequences with and without epigenomic modification, the researchers identified DNA patterns associated with the changes. They call this novel analysis pipeline Epigram and have made both the program and the DNA motifs they identified openly available to other scientists.

Reflected smartphone transmissions enable gesture control

September 22, 2014 8:52 am | by Michelle Ma, Univ. of Washington | News | Comments

Some smartphones are starting to incorporate 3-D gesture sensing based on cameras, but cameras consume significant battery power and require a clear view of the user’s hands. Univ. of Washington engineers have developed a new form of low-power wireless sensing technology that could soon contribute to gesture control by letting users “train” their smartphones to recognize and respond to specific hand gestures near the phone.

Team improves solar cell efficiency with new polymer

September 19, 2014 4:49 pm | by Emily Conover, Univ. of Chicago | News | Comments

A collaboration between scientists in the Univ. of Chicago’s chemistry department, the Institute for Molecular Engineering and Argonne National Laboratory has produced the highest-ever recorded efficiency for solar cells made of two types of polymers and fulllerene. Researchers identified a new polymer that improved the efficiency of solar cells and also determined the method by which the polymer improved the cells’ efficiency.

Advertisement

Quick-change materials break the silicon speed limit for computers

September 19, 2014 4:28 pm | by Stephen Elliott , Univ. of Cambridge | News | Comments

Faster, smaller, greener computers, capable of processing information up to 1,000 times faster than currently available models, could be made possible by replacing silicon with materials that can switch back and forth between different electrical states. Recent research in the U.K. show that these phase-change materials have promise in new processors made with chalcogenide glass.

Video games could dramatically streamline education research

September 19, 2014 9:12 am | by C. Brandon Chapman, Washington State Univ. | News | Comments

Washington State Univ. professor Rich Lamb has figured out a dramatically easier and more cost-effective way to do research on science curriculum in the classroom, and it could include playing video games. Called “computational modeling,” it involves a computer “learning” student behavior and then “thinking” as students would. Lamb, who teaches science education, says the process could revolutionize the way educational research is done.

Breaking “electrode barrier” creates a better low-cost organic solar cell

September 19, 2014 9:02 am | News | Comments

For decades, the power conversion efficiency of organic solar cells was hampered by the drawbacks of commonly used metal electrodes, including their instability and susceptibility to oxidation. Now for the first time, researchers at the Univ. of Massachusetts Amherst have developed a more efficient, easily processable and lightweight solar cell that can use virtually any metal for the electrode, effectively breaking the “electrode barrier.”

Math model designed to replace invasive kidney biopsy for lupus patients

September 19, 2014 8:34 am | by Emily Caldwell, Ohio State Univ. | News | Comments

Mathematics might be able to reduce the need for invasive biopsies in patients suffering kidney damage related to the autoimmune disease lupus. In a new study, researchers developed a math model that can predict the progression from nephritis, or kidney inflammation, to interstitial fibrosis, scarring in the kidney that current treatments cannot reverse. A kidney biopsy is the only existing way to reach a definitive diagnosis.

Fingertip sensor gives robot dexterity

September 19, 2014 7:42 am | by Larry Hardesty, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology (MIT) and Northeastern Univ. have equipped a robot with a novel tactile sensor that lets it grasp a USB cable draped freely over a hook and insert it into a USB port. The sensor is an adaptation of a technology called GelSight, which was developed at MIT, and first described in 2009.

Sandia pioneers software for smart, sustainable institutions

September 18, 2014 8:13 am | by Stephanie Holinka, Sandia National Laboratories | News | Comments

Sandia National Laboratories’ Institutional Transformation (IX) model helps the federal laboratory reduce its energy consumption and could help other large institutions do the same. The IX model allows planners to experiment with energy conservation measures before making expensive changes. It also models operations-oriented conservation methods.

Team aims to improve plant-based battery with neutrons, simulation

September 18, 2014 8:02 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

When Orlando Rios first started analyzing samples of carbon fibers made from a woody plant polymer known as lignin, he noticed something unusual. The material’s microstructure—a mixture of perfectly spherical nanoscale crystallites distributed within a fibrous matrix—looked almost too good to be true.

New algorithms lets owners swap, recharge battery modules in electric cars

September 17, 2014 1:51 pm | News | Comments

Imagine being able to switch out the batteries in electric cars just like you switch out batteries in a photo camera or flashlight. Engineers in California are trying to accomplish just that, in partnership with a local San Diego engineering company. Rather than swapping out the whole battery, which is cumbersome and requires large, heavy equipment, engineers plan to swap out and recharge smaller units within the battery, known as modules.

Designing more successful synthetic molecules

September 17, 2014 11:08 am | by Bjorn Carey, Stanford News Service | News | Comments

Ever since Robert Hooke first described cells in 1665, scientists have been trying to figure out what goes on inside. One of the most exciting modern techniques involves injecting cells with synthetic genetic molecules that can passively report on the cell's behavior. A new computer model could not only improve the sensitivity and success of these synthetic molecules, but also make them easier to design in the first place.

Scientists twist radio beams to send data

September 17, 2014 10:55 am | by Robert Perkins, Univ. of Southern California | News | Comments

Building on previous research that twisted light to send data at unheard-of speeds, scientists at the Univ. of Southern California (USC) have developed a similar technique with radio waves, reaching high speeds without some of the hassles that can go with optical systems. The researchers reached data transmission rates of 32 Gbps across 2.5 m of free space in a basement laboratory at USC.

Toward optical chips

September 17, 2014 9:42 am | by Larry Hardesty, MIT News Office | News | Comments

Chips that use light, rather than electricity, to move data would consume much less power. Of the three chief components of optical circuits—light emitters, modulators and detectors—emitters are the toughest to build. One promising light source for optical chips is molybdenum disulfide (MoS2), which has excellent optical properties when deposited as a single, atom-thick layer.

For electronics beyond silicon, a new contender emerges

September 17, 2014 8:13 am | by Caroline Perry, Harvard Univ. | News | Comments

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors can’t simply keep shrinking to meet the needs of powerful, compact devices; physical limitations like energy consumption and heat dissipation are too significant. Now, using a quantum material called a correlated oxide, researchers have achieved a reversible change in electrical resistance of eight orders of magnitude.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading