Advertisement
Information Technologies
Subscribe to Information Technologies
View Sample

FREE Email Newsletter

Carnegie Mellon, Microsoft Research automate privacy compliance for big data systems

May 21, 2014 1:56 pm | News | Comments

Web services companies make promises about how they will use personal information. But ensuring that millions of lines of code operate in ways consistent with privacy promises is difficult. A team from Carnegie Mellon Univ.and Microsoft Research has shown, however, that these compliance checks can be automated. Their prototype automated system is now running on the data analytics pipeline of Bing, Microsoft's search engine.

Busting rust with light: New technique delivers perfect paint job

May 20, 2014 3:08 pm | News | Comments

Now researchers have developed a new way to measure the thickness of paint layers and the size of particles embedded inside. A technique called terahertz reflectometry is used to characterize coats of paint without damaging them. No other current methods can do this successfully, and the technique could be useful for a variety of applications from cars to cancer detection.

Improved computer simulations enable better calculation of interfacial tension

May 20, 2014 3:03 pm | News | Comments

Simulations in statistical physics are typically restricted to systems under 100,000 particles, many times smaller than the actual material quantities used in typical experiments. Finite-size corrections can adjust the results to the macroscopic scale. A team of researchers in Germany has now succeeded in better understanding how this technique works when it is used to assess interfacial tension, thus enabling more accurate predictions.

Advertisement

Scientists study biomechanics behind amazing ant strength

May 20, 2014 2:40 pm | News | Comments

A small group of engineers at Ohio State Univ. combined laboratory testing and computational modeling conducted at the Ohio Supercomputer Center to determine the relationship between the mechanical function, structural design and material properties of the Allegheny mound ant, a creature that can lift objects many times heavier than its own body. The study could solve the mystery of how this structure actually works.

Planting the “SEEDS” of solar technology in the home

May 20, 2014 2:35 pm | News | Comments

In an effort to better understand what persuades people to buy photovoltaic systems for their homes, researchers at Sandia National Laboratories are gathering data on consumer motivations that can feed computer models and thus lead to greater use of solar energy. A primary goal of the project is to help increase the nation’s share of solar energy in the electricity market from its current share of less than .05% to at least 14% by 2030.

New supercapacitor design stands up to abuse

May 20, 2014 7:52 am | by David Salisbury, Vanderbilt Univ. | News | Comments

Modern supercapacitors store ten times less energy than a lithium-ion battery but can last a thousand times longer. The main drawback of supercapacitors, however, is the inability to cope with stresses such as pressure and vibration. Researchers have developed a new supercapacitor that operates flawlessly in storing and releasing electrical charge while subject to stresses or pressures up to 44 psi and vibrational accelerations over 80 g.

Optical brain scanner goes where other brain scanners can’t

May 19, 2014 1:25 pm | by Michael C. Purdy, WUSTL | News | Comments

Scientists have advanced a brain-scanning technology that tracks what the brain is doing by shining dozens of tiny LED lights on the head. This new generation of neuroimaging compares favorably to other approaches but avoids the radiation exposure and bulky magnets the others require, according to new research at Washington Univ. School of Medicine in St. Louis.

New “T-ray” tech converts light to sound for weapons detection, medical imaging

May 19, 2014 1:17 pm | News | Comments

Terahertz, or T-ray, range of the electromagnetic has rich promise for scientific applications, but instrumentation that can take advantage of these rays for imaging are still in progress. Univ. of Michigan researchers have recently made a breakthrough by converting terahertz light into sound using a compact, sensitive detector that operates at room temperature and is fabricated in an unusual manner.

Advertisement

“Smoking gun” evidence for theory that Saturn’s collapsing magnetic tail causes auroras

May 19, 2014 9:47 am | News | Comments

Researcher in the U.K. has recently shown that Saturn’s auroras are caused by the same phenomenon which leads to dramatic auroral displays on Earth. The finding originates in stunning new images of Saturn’s auroras as the planet’s magnetic field is battered by charged particles from the Sun.

Improved supercapacitors provides twice the energy and power

May 19, 2014 9:44 am | by Sean Nealon, UC Riverside | News | Comments

Researchers at the Univ. of California, Riverside have developed a new nanometer scale ruthenium oxide anchored nanocarbon graphene foam architecture that improves the performance of supercapacitors. They found that the new structure could operate safely in aqueous electrolyte and deliver two times more energy and power compared to supercapacitors commercially available today.

Engineers find way to lower risk of mid-air collisions for small aircraft

May 19, 2014 7:57 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers at North Carolina State Univ. have developed new modifications for technology that helps pilots of small aircraft avoid midair collisions. The modified tools significantly improved pilot response times in making decisions to avert crashes. At issue are cockpit displays of traffic information (CDTIs). These are GPS displays used by private pilots to track other aircraft in their vicinity.

IBM research discovers new class of industrial polymers

May 16, 2014 2:03 pm | News | Comments

Scientists at IBM Research have used a new “computational chemistry” hybrid approach to accelerate the materials discovery process that couples laboratory experimentation with the use of high-performance computing. The new polymers are the first to demonstrate resistance to cracking, strength higher than bone, the ability to reform to their original shape (self-heal), and the ability to be completely recycled back to the starting material.

Study: Emissions from forests influence first stage of cloud formation

May 16, 2014 8:03 am | News | Comments

Clouds are the largest source of uncertainty in present climate models. Much of the uncertainty surrounding clouds' effect on climate stems from the complexity of cloud formation. New research from scientists at the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment at CERN sheds light on new-particle formation, which is the very first step of cloud formation and a critical component of climate models.

Advertisement

Glasses-free 3-D projector

May 16, 2014 7:49 am | by Larry Hardesty, MIT News Office | Videos | Comments

Over the past three years, researchers in the Camera Culture group at the Massachusetts Institute of Technology Media Lab have steadily refined a design for a glasses-free, multi-perspective, 3-D video screen, which they hope could provide a cheaper, more practical alternative to holographic video in the short term.

Researchers in Korea greatly improve piezoelectric nanogenerator efficiency

May 15, 2014 12:51 pm | News | Comments

Scientists at the Korea Advanced Institute of Science and Technology have increased the energy efficiency of a piezoelectric nanogenerator by almost 40 times, moving it closer to commercial flexible energy harvesters that can supply power infinitely to wearable, implantable electronic devices. The technique used to make this improvement, laser lift-off, allows the placement of a high-quality piezoelectric film on a sapphire substrate.

Nanowire-bridging transistors open way to next-generation electronics

May 15, 2014 11:54 am | News | Comments

A new approach to integrated circuits, combining atoms of semiconductor materials into nanowires and structures on top of silicon surfaces, shows promise for a new generation of fast, robust electronic and photonic devices. Engineers in California have recently demonstrated 3-D nanowire transistors using this approach that open exciting opportunities for integrating other semiconductors, such as gallium nitride, on silicon substrates.

Researchers make breakthrough in terahertz technology

May 15, 2014 9:54 am | News | Comments

Culminating a ten-year development effort, Teraphysics Corp. scientists have demonstrated the emission of terahertz light by passing electron beams through a gold coil, smaller in diameter than a human hair, supported by a diamond structure. The detection of a terahertz signal provided proof of concept for Teraphysics’ suite of microfabricated vacuum electronic devices.

X-rays, computer simulations reveal crystal growth

May 15, 2014 9:08 am | by Anne Ju, Cornell Univ. | News | Comments

A research team that figured out how to coat an organic material as a thin film wanted a closer look at why their spreadable organic semiconductor grew like it did. So Cornell Univ. scientists used their high-energy synchrotron x-ray source to show how these organic molecules formed crystal lattices at the nanoscale. These high-speed movies could help advance the technology move from the laboratory to mass production.

The brain: Key to a better computer

May 15, 2014 8:03 am | by Sue Holmes, Sandia National Laboratories | News | Comments

Your brain is incredibly well suited to handling whatever comes along, plus it’s tough and operates on little energy. Those attributes—dealing with real-world situations, resiliency and energy efficiency—are precisely what might be possible with neuro-inspired computing.

Strongly interacting electrons in wacky oxide synchronize to work like the brain

May 14, 2014 2:01 pm | by Walt Mills, Penn State Univ. | News | Comments

Vanadium dioxide is called a "wacky oxide" because it transitions between a conducting metal and an insulating semiconductor and with the addition of heat or electrical current. A device created by Penn State engineers uses a thin film of vanadium oxide on a titanium dioxide substrate to create an oscillating switch that could form the basis of a computational device that uses a fraction of the energy necessary for today’s computers.

Microchip-like technology allows single-cell analysis

May 14, 2014 1:52 pm | News | Comments

A U.S. and Korean research team has developed a chip-like device that could be scaled up to sort and store hundreds of thousands of individual living cells in a matter of minutes. The system is similar to a random access memory chip, but it moves cells rather than electrons.

Using nature as a model for low-friction bearings

May 14, 2014 9:30 am | News | Comments

The mechanical properties of natural joints are considered unrivalled. Cartilage is coated with a special polymer layer allowing joints to move virtually friction-free, even under high pressure. Using simulations, scientists in Europe have developed a new process that technologically imitates biological lubrication and even improves it using two different types of polymers.

Implanted devices may reshape medicine

May 14, 2014 8:19 am | Videos | Comments

Researchers from The Univ. of Texas at Dallas and the Univ. of Tokyo have created electronic devices that become soft when implanted inside the body and can deploy to grip 3-D objects, such as large tissues, nerves and blood vessels. These biologically adaptive, flexible transistors might one day help doctors learn more about what is happening inside the body, and stimulate the body for treatments.

High-tech peg measures palsy patients’ dexterity

May 14, 2014 7:31 am | Videos | Comments

It looks like a game board and many of its users will find it fun, but there’s serious intent behind a device by Rice Univ. students to test the abilities of cerebral palsy patients. At the heart of the DeXcellence platform is a small peg comfortable enough for a three-year-old to hold. But packed inside are enough electronics to tell a nearby computer, tablet or other Bluetooth-enabled device of how the cylinder is moving in space.

Observing electron clouds, scientists could improve chemical processes

May 13, 2014 8:28 am | News | Comments

With the help of an x-ray laser, a team of international researchers has looked more precisely than ever before into the electron cloud, a bunch of charged tiny particles orbiting molecules. The team managed to document changes in the states of electrons in a similar way to how pictures taken at different times can be assembled to become a movie.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading