Advertisement
Information Technologies
Subscribe to Information Technologies
View Sample

FREE Email Newsletter

Battery-free tech brings gesture recognition to all devices

February 27, 2014 12:56 pm | by Michelle Ma, Univ. of Washington | Videos | Comments

Univ. of Washington computer scientists have built a low-cost gesture recognition system that runs without batteries and lets users control their electronic devices hidden from sight with simple hand movements. The prototype, called “AllSee,” uses existing TV signals as both a power source and the means for detecting a user’s gesture command.

2nd Annual Chromatography Community Mixer

February 27, 2014 11:12 am | Events

This event will bring together scientist from chromatography discussion groups throughout North America for discussion, refreshments and music. Tickets, which are required for entry to this free event, are available from local and regional chromatography discussion groups and from chromatography equipment and media vendors.

Study: New gas-phase compounds form organic particle ingredients

February 27, 2014 10:51 am | News | Comments

So-called extremely low-volatility organic compounds, which are produced by plants, have been detected for the first time during field and laboratory experiments in Finland and Germany. The results may help to explain discrepancies between observations and theories about how volatile organic compounds produced by vegetation are converted into atmospheric aerosol. This in turn should improve existing climate models.

Advertisement

Noting tech needs, mining companies seek graphite

February 27, 2014 6:18 am | by Dan Joling - Associated Press - Associated Press | News | Comments

Tear apart an electric car's rechargeable battery and you'll find a mineral normally associated with No. 2 pencils. It's graphite. And experts say the promise of expanded uses for "pencil lead" in lithium-ion batteries, as well as a decrease in supply from China, has helped touch off the largest wave of mining projects in decades.

Nanoparticle networks' design enhanced by theory

February 26, 2014 5:22 pm | by Anne Ju, Cornell Univ. | News | Comments

Cornell Univ. researchers have recently led what is probably the most comprehensive study to date of block copolymer nanoparticle self-assembly processes. The work is important, because using polymers to self-assemble inorganic nanoparticles into porous structures could revolutionize electronics.

Nanoscale freezing leads to better imaging

February 26, 2014 4:40 pm | by Justin H.S. Breaux | News | Comments

For scientists to determine if a cell is functioning properly, they often must destroy it with ionizing radiation, which is used in x-ray fluorescence microscopy to provide detail that conventional microscopes can’t match. To address this, Argonne National Laboratory researchers created the R&D 100 Award-winning Bionanoprobe, which freezes cells to “see” at greater detail without damaging the sample.

Physicists discover “quantum droplet” in semiconductor

February 26, 2014 3:25 pm | News | Comments

JILA physicists used an ultrafast laser and help from German theorists to discover a new semiconductor quasiparticle, a handful of smaller particles that briefly condense into a liquid-like droplet. Quasiparticles are composites of smaller particles that can be created inside solid materials and act together in a predictable way.

Maze puts images on floor, where rats look

February 26, 2014 3:01 pm | by David Orenstein, Brown Univ. | News | Comments

Visual acuity is sharpest for rats and mice when the animals are looking down. Researchers have found that rodents can learn tasks in a fourth to a sixth of the usual number of repetitions when visual stimuli are projected onto the floor of the maze rather than onto the walls.

Advertisement

National labs join forces to develop next supercomputers

February 26, 2014 9:36 am | News | Comments

Lawrence Livermore National Laboratory has joined forces with two other national laboratories—Oak Ridge and Argonne—to deliver next-generation supercomputers able to perform up to 200 peak petaflops, about 10 times faster than today's most powerful high-performance computing (HPC) systems.

Novel optical fibers transmit high-quality images

February 26, 2014 8:06 am | News | Comments

After having recently discovered a new way to propagate multiple beams of light through a single strand of optical fiber, engineers at the Univ. of Wisconsin-Milwaukee now have found that their novel fiber architecture can transmit images with a quality that is comparable or better than the current commercial endoscopy imaging fibers.

A cavity that you want

February 25, 2014 4:53 pm | by Cory Nealon, Univ. of Buffalo | News | Comments

Associated with unhappy visits to the dentist, “cavity” means something else in the science of optics. An arrangement of mirrors that allows beams of light to circulate in closed paths, or cavities, help us build laser and optical fibers. Now, a research team pushed the concept further by developing an optical “nanocavity” that boosts the amount of light that ultrathin semiconductors absorb.

Project to ensure “what you see is what you send”

February 25, 2014 4:43 pm | News | Comments

Imagine a user who intends to send $2 to a friend through PayPal. Embedded malware in the user’s laptop, however, converts the $2 transaction into a $2,000 transfer to the account of the malware author instead. Researchers at Georgia Institute of Technology have created a prototype software, Gyrus, that takes steps to prevent malware from sending spam emails and instant messages, and blocking unauthorized commands such as money transfers.

New record set for data-transfer speeds

February 25, 2014 1:31 pm | News | Comments

Researchers at IBM have set a new record for data transmission over a multimode optical fiber, a type of cable that is typically used to connect nearby computers within a single building or on a campus. The data was sent at a rate of 64 Gb/s over a cable 57-m long using a type of laser called a vertical-cavity surface-emitting laser. This rate is 2.5 times faster than the capabilities of today's typical commercial technology.

Advertisement

Want your computer to go faster? Just add light

February 25, 2014 1:26 pm | by Angela Herring, Northeastern Univ. | News | Comments

Last year, a physicist and a mechanical engineer at Northeastern Univ. com­bined their expertise to integrate electronic and optical properties on a single electronic chip, enabling them to switch electrically using light alone. Now, they have built three new devices that implement this fast technology: an AND-gate, an OR-gate and a camera-like sensor made of 250,000 miniature devices.

Safer Drug Delivery to the Brain

February 25, 2014 1:23 pm | by Lindsay Hock, Managing Editor | Articles | Comments

Delivering drugs into the brain to treat neurological diseases and disorders has been a challenge. The current best and easiest way to get drugs anywhere in the body is to take them orally or to administer them intravenously. But the challenges for these routes of drug delivery for targets in the brain are multiple.

Want your computer to go faster? Just add light

February 25, 2014 1:14 pm | by Angela Herring, Northeastern Univ. | News | Comments

Every second, your com­puter must process bil­lions of com­pu­ta­tional steps to pro­duce even the sim­plest out­puts. Imagine if every one of those steps could be made just a tiny bit more effi­cient. A Northeastern Univ. team has devel­oped a series of novel devices that do just that. The team combined their expertise to unearth a phys­ical phe­nom­enon that could usher in a new wave of highly efficient electronics.

How do you build a large-scale quantum computer?

February 25, 2014 1:13 pm | by E. Edwards, Joint Quantum Institute | News | Comments

The physical implementation of a full-scale universal quantum computer remains an extraordinary challenge for physicists, mainly because existing approaches lose their “quantum-ness” as they are scaled up. At the Joint Quantum Institute, a new modular architecture is being explored that offers scalability to large numbers of qubits, and its components have been tested and are available.

On the road to Mottronics

February 25, 2014 8:38 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Mottronics is a term seemingly destined to become familiar to aficionados of electronic gadgets. Named for the Nobel laureate Nevill Francis Mott, Mottronics involve materials that can be induced to transition between electrically conductive and insulating phases. If these phase transitions can be controlled, Mott materials hold promise for future transistors and memories that feature higher energy efficiencies and faster switching speeds.

Phone makers look to emerging markets for growth

February 25, 2014 8:08 am | by Anick Jesdanun - AP Technology Writer - Associated Press | News | Comments

Here's the rub for companies: A good part of the key markets they serve already own smartphones and use them to connect various Internet services. How do you grow from there? Companies from Facebook to Firefox are looking to emerging markets for the next few billion people. They are not only targeting the obvious high-population countries...

Researchers “design for failure” with model material

February 24, 2014 11:02 am | News | Comments

When deciding what materials to use in building something, determining how those materials respond to stress and strain is often the first task. A material’s macroscopic, or bulk, properties in this area is generally the product of what is happening on a microscopic scale. When stress causes a material’s constituent molecules to rearrange in a way such that they can't go back to their original positions, it is known as plastic deformation.

Researchers use light to quickly, easily measure blood clotting

February 24, 2014 10:38 am | News | Comments

Defective blood coagulation is one of the leading causes of preventable death in patients who have suffered trauma or undergone surgery. To provide caregivers with timely information about the clotting properties of a patient’s blood, researchers have developed an optical device that requires only a few drops of blood and a few minutes to measure the key coagulation parameters that can guide medical decisions.

Building artificial cells will be a noisy business

February 24, 2014 8:09 am | by Cynthia Eller, California Institute of Technology | News | Comments

Engineers like to make things that work. And if one wants to make something work using nanoscale components, the size of proteins, antibodies and viruses, mimicking the behavior of cells is a good place to start since cells carry an enormous amount of information in a very tiny packet.

Vibration energy the secret to self-powered electronics

February 21, 2014 7:24 am | News | Comments

A multi-university team of engineers has developed what could be a promising solution for charging smartphone batteries on the go, without the need for an electrical cord. Incorporated directly into a cell phone housing, the team's nanogenerator could harvest and convert vibration energy from a surface, such as the passenger seat of a moving vehicle, into power for the phone.

NIST atomtronic study may pave the way for new devices

February 20, 2014 9:04 am | News | Comments

While pursuing the goal of turning a cloud of ultracold atoms into a completely new kind of circuit element, physicists at NIST have demonstrated that such a cloud, known as a Bose-Einstein condensate, can display a sort of "memory." The findings pave the way for a host of novel devices based on "atomtronics," an emerging field that offers an alternative to conventional electronics.

A new laser for a faster Internet

February 20, 2014 8:16 am | by Jessica Stoller-Conrad, Caltech | News | Comments

A new laser developed by a research group at Caltech holds the potential to increase by orders of magnitude the rate of data transmission in the optical-fiber network: the backbone of the Internet. The high-coherence new laser converts current to light using III-V material, but in a fundamental departure from S-DFB lasers, it stores the light in a layer of silicon, which does not absorb light.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading