Advertisement
Information Technologies
Subscribe to Information Technologies
View Sample

FREE Email Newsletter

A prison for photons in a diamond-like photonic crystal

September 26, 2014 9:08 am | News | Comments

Confined photons have many potential applications, such as efficient miniature lasers, on-chip information storage, or tiny sensors on pharmaceuticals. Making a structure that can capture photons is difficult, but scientists in the Netherlands have recently devised a new type of resonant cavity inside a photonic crystal that imprisons light in all three dimensions.

Discovery could pave way for spin-based computing

September 26, 2014 8:48 am | by Joe Miksch, Univ. of Pittsburgh | News | Comments

Electricity and magnetism rule our digital world. Semiconductors process electrical information, while magnetic materials enable long-term data storage. A Univ. of Pittsburgh research team has discovered a way to fuse these two distinct properties in a single material, paving the way for new ultrahigh density storage and computing architectures.

Researcher works to predict electric power blackouts before they happen

September 26, 2014 8:34 am | by Katie Jones, Oak Ridge National Laboratory | News | Comments

The largest power outage in U.S. history, the 2003 Northeast blackout, began with one power line in Ohio going offline and ended with more than 50 million people without power throughout the Northeast and the Canadian province of Ontario. Despite the apparent failure of the electric grid during such cascading events, blackouts aren’t necessarily grid failures.

Advertisement

Hard facts lead to “green” concrete

September 26, 2014 7:53 am | by Mike Williams, Rice Univ. | News | Comments

Concrete can be better and more environmentally friendly by paying attention to its atomic structure, according to researchers at Rice Univ., the Massachusetts Institute of Technology and Marseille Univ. The international team of scientists has created computational models to help concrete manufacturers fine-tune mixes for general applications.

Underwater robot for port security

September 26, 2014 7:42 am | by Larry Hardesty, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers unveiled an oval-shaped submersible robot, a little smaller than a football, with a flattened panel on one side that can slide along an underwater surface to perform ultrasound scans. Originally designed to look for cracks in nuclear reactors’ water tanks, the robot could also inspect ships for the false hulls and propeller shafts that smugglers frequently use to hide contraband.

How LIMS is Essential in the Biofuels Industry

September 25, 2014 10:26 am | by Colin Thurston, Director of Product Strategy, Thermo Fisher Scientific | Thermo Fisher Scientific | Articles | Comments

As U.S. energy imports dramatically drop it would appear that renewables investment is in jeopardy, including the biofuels market. There’s some evidence to support this; but if declining or stalled investment is predicated on the limited potential of existing technology, much of which still relies on biomass, the biofuels industry may, in fact, be undergoing a natural transition instead of a decline.

Solar explosions inside a computer

September 25, 2014 8:44 am | News | Comments

Strong solar flares can bring down communications and power grids on Earth. Physicists in Switzerland have examined the processes that take place when explosions occur on the Sun’s surface and have accurately reconstructed the statistical size distribution and temporal succession of the solar flares with a computer model. This has allowed them to make several new observations about the how these flares occur and behave.

Live long and phosphor: Blue LED breakthrough for efficient electronics

September 25, 2014 8:36 am | News | Comments

Blue organic light-emitting diodes (OLEDs) are one of a trio of colors used in OLED displays such as smartphone screens and high-end TVs. In a step that could lead to longer battery life in smartphones and lower power consumption for large-screen televisions, researchers at the Univ. of Michigan have extended the lifetime of blue organic light emitting diodes by a factor of 10.

Advertisement

2-D materials’ crystalline defects key to new properties

September 24, 2014 11:13 am | News | Comments

using an aberration-corrected scanning transmission electron microscope, researchers have recently understood how defects in 2-D crystals such as tungsten disulphide can move, or dislocate, to other locations in the material. Understanding how atoms "glide" and "climb" on the surface of 2-D crystals may pave the way for researchers to develop materials with unusual or unique characteristics.

Nanotechnology leads to better, cheaper LEDs for phones and lighting

September 24, 2014 10:57 am | by John Sullivan, Princeton Univ. | News | Comments

Princeton Univ. researchers have developed a new method to increase the power and clarity of light-emitting diodes (LEDs). Using a new nanoscale structure made from flexible carbon-based sheet, the researchers increased the brightness and efficiency of LEDs made of organic materials by 57%.

Low-cost, “green” transistor heralds advance in flexible electronics

September 24, 2014 10:02 am | News | Comments

As tech company LG demonstrated this summer with the unveiling of its 18-in flexible screen, the next generation of roll-up displays is tantalizingly close. Researchers are now reporting a new, inexpensive and simple way to make transparent, flexible transistors that could help bring roll-up smartphones with see-through displays and other bendable gadgets to consumers in just a few years.

Island to get first German drone delivery service

September 24, 2014 9:49 am | News | Comments

Deutsche Post DHL says it is starting Germany's first drone package delivery service, a test program transporting medicine to a pharmacy on a North Sea island. The company said the quad-rotor "DHL Paketkopter 2.0" will begin daily flights Friday, bringing a maximum load of 1.2 kg of medicine to the German island of Juist.

Magnetic field opens and closes nanovesicle

September 24, 2014 9:18 am | Videos | Comments

Researchers in the Netherlands have managed to open nanovesicles in a reversible process and close them using a magnet. Previously, these vesicles had been “loaded” with a drug and opened elsewhere using a chemical process, such as osmosis. The magnetic method, which is repeatable, is the first to demonstrate the viability of another method.

Advertisement

Mission accomplished: India joins Mars explorers

September 24, 2014 8:58 am | by Katy Daigle, Associated Press | News | Comments

India triumphed in its first interplanetary mission, placing a satellite into orbit around Mars on Wednesday and catapulting the country into an elite club of deep-space explorers. In scenes broadcast live on Indian TV, scientists broke into wild cheers as the orbiter's engines completed 24 min of burn time to maneuver the spacecraft into its designated place around the red planet.

Nuclear spins control electrical currents

September 23, 2014 2:47 pm | by Katherine Kornei | News | Comments

An international team of physicists has shown that information stored in the nuclear spins of hydrogen isotopes in an organic light-emitting diode (LED) or organic LED can be read out by measuring the electrical current through the device. Unlike previous schemes that only work at ultracold temperatures, this is the first to operate at room temperature, and could be used to create extremely dense and highly energy-efficient memory devices.

New properties found in promising oxide ceramics for reactor fuels

September 23, 2014 2:14 pm | News | Comments

Nanocomposite oxide ceramics have potential uses as ferroelectrics, fast ion conductors, and nuclear fuels and for storing nuclear waste, generating a great deal of scientific interest on the structure, properties, and applications of these blended materials. Los Alamos National Laboratory researchers have made the first observations of the relationship between the chemistry and dislocation structures of the nanoscale interfaces.

New formulation leads to improved liquid battery

September 23, 2014 2:07 pm | by David L. Chandler, MIT | News | Comments

Donald Sadoway and his colleagues at the Massachusetts Institute of Technology have already started a company to produce electrical-grid-scale liquid batteries, whose layers of molten material automatically separate due to their differing densities. But a newly developed formula substitutes different metals for the molten layers. The new formula allows the battery to work at a much lower temperature.

Engineers show light can play seesaw at the nanoscale

September 23, 2014 9:41 am | News | Comments

Univ. of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The tiny device is just .7 micrometers by 50 micrometers and works almost like a seesaw. On each side of the “seesaw benches,” researchers etched an array of holes, called photonic crystal cavities. These cavities capture photons that streamed from a nearby source.

A molecule in an optical whispering gallery

September 23, 2014 9:19 am | News | Comments

Using an optical microstructure and gold nanoparticles, scientists have amplified the interaction of light with DNA to the extent that they can now track interactions between individual DNA molecule segments. In doing so, they have approached the limits of what is physically possible. This optical biosensor for single unlabelled molecules could also be a breakthrough in the development of biochips:

Program predicts placement of chemical tags that control gene activity

September 22, 2014 9:20 am | by Susan Brown, Univ. of California, San Diego | News | Comments

Biochemists in California have developed a program that predicts the placement of chemical marks that control the activity of genes based on sequences of DNA. By comparing sequences with and without epigenomic modification, the researchers identified DNA patterns associated with the changes. They call this novel analysis pipeline Epigram and have made both the program and the DNA motifs they identified openly available to other scientists.

Reflected smartphone transmissions enable gesture control

September 22, 2014 8:52 am | by Michelle Ma, Univ. of Washington | News | Comments

Some smartphones are starting to incorporate 3-D gesture sensing based on cameras, but cameras consume significant battery power and require a clear view of the user’s hands. Univ. of Washington engineers have developed a new form of low-power wireless sensing technology that could soon contribute to gesture control by letting users “train” their smartphones to recognize and respond to specific hand gestures near the phone.

Team improves solar cell efficiency with new polymer

September 19, 2014 4:49 pm | by Emily Conover, Univ. of Chicago | News | Comments

A collaboration between scientists in the Univ. of Chicago’s chemistry department, the Institute for Molecular Engineering and Argonne National Laboratory has produced the highest-ever recorded efficiency for solar cells made of two types of polymers and fulllerene. Researchers identified a new polymer that improved the efficiency of solar cells and also determined the method by which the polymer improved the cells’ efficiency.

Quick-change materials break the silicon speed limit for computers

September 19, 2014 4:28 pm | by Stephen Elliott , Univ. of Cambridge | News | Comments

Faster, smaller, greener computers, capable of processing information up to 1,000 times faster than currently available models, could be made possible by replacing silicon with materials that can switch back and forth between different electrical states. Recent research in the U.K. show that these phase-change materials have promise in new processors made with chalcogenide glass.

Video games could dramatically streamline education research

September 19, 2014 9:12 am | by C. Brandon Chapman, Washington State Univ. | News | Comments

Washington State Univ. professor Rich Lamb has figured out a dramatically easier and more cost-effective way to do research on science curriculum in the classroom, and it could include playing video games. Called “computational modeling,” it involves a computer “learning” student behavior and then “thinking” as students would. Lamb, who teaches science education, says the process could revolutionize the way educational research is done.

Breaking “electrode barrier” creates a better low-cost organic solar cell

September 19, 2014 9:02 am | News | Comments

For decades, the power conversion efficiency of organic solar cells was hampered by the drawbacks of commonly used metal electrodes, including their instability and susceptibility to oxidation. Now for the first time, researchers at the Univ. of Massachusetts Amherst have developed a more efficient, easily processable and lightweight solar cell that can use virtually any metal for the electrode, effectively breaking the “electrode barrier.”

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading