Advertisement
Information Technologies
Subscribe to Information Technologies

The Lead

Slinky lookalike “hyperlens” helps us see tiny objects

May 22, 2015 10:27 am | by Cory Nealon, Univ. at Buffalo | News | Comments

It looks like a Slinky suspended in motion. Yet this photonics advancement, called a metamaterial hyperlens, doesn’t climb down stairs. Instead, it improves our ability to see tiny objects. The hyperlens may someday help detect some of the most lethal forms of cancer.

Robot masters new skills through trial-and-error

May 22, 2015 10:04 am | by Sarah Yang, Univ. of California, Berkeley | Videos | Comments

Univ. of California, Berkeley researchers have developed algorithms that enable robots to learn...

Cooling the cloud

May 22, 2015 8:34 am | by Binghamton Univ. | News | Comments

Data centers are one of the largest and fastest-growing consumers of electricity in the U.S. The...

Mars Rover’s ChemCam gets sharper vision

May 22, 2015 7:51 am | by Nancy Amrbosiano, Los Alamos National Laboratory | News | Comments

NASA’s Mars Curiosity Rover’s ChemCam instrument just got a major capability fix, as Los Alamos...

View Sample

FREE Email Newsletter

Uncovering the mysteries of cosmic explosions

May 21, 2015 4:06 pm | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

An automated software system developed at Los Alamos National Laboratory played a key role in the discovery of supernova iPTF 14atg and could provide insight, a virtual Rosetta stone, into future supernovae and their underlying physics.

Mission possible: This device will self-destruct when heated

May 21, 2015 3:06 pm | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | Videos | Comments

Where do electronics go when they die? Most devices are laid to eternal rest in landfills. But what if they just dissolved away, or broke down to their molecular components so that the material could be recycled? Univ. of Illinois researchers have developed heat-triggered self-destructing electronic devices, a step toward greatly reducing electronic waste and boosting sustainability in device manufacturing.

Gauging materials’ physical properties from video

May 21, 2015 10:42 am | by Larry Hardesty, MIT News Office | News | Comments

Last summer, MIT researchers published a paper describing an algorithm that can recover intelligible speech from the analysis of the minute vibrations of objects in video captured through soundproof glass. In June, researchers from the same groups will describe how the technique can be adapted to infer material properties of physical objects, such as stiffness and weight, from video.

Advertisement

Technology could change future wireless communications

May 21, 2015 10:22 am | by Univ. of Bristol | News | Comments

Radio systems, such as mobile phones and wireless Internet connections, have become an integral part of modern life. However, today's devices use twice as much of the radio spectrum as is necessary. New technology is being developed that could fundamentally change radio design and could increase data rates and network capacity, reduce power consumption, create cheaper devices and enable global roaming.

Simulations predict flat liquid

May 21, 2015 10:11 am | by Academy of Finland | News | Comments

Computer simulations have predicted a new phase of matter: atomically thin 2-D liquid. This prediction pushes the boundaries of possible phases of materials further than ever before. Two-dimensional materials themselves were considered impossible until the discovery of graphene around 10 years ago.

Designing microwave devices from scratch

May 21, 2015 10:03 am | by Umea Univ. | News | Comments

For decades, the fundamental design of microwave devices, such as antennas for mobile communication and waveguides used in radars, has essentially relied on the inventiveness of a professional designer. Computer simulations are usually used only in final design stages to fine-tune details in the design.

Seashell strength inspires stress tests

May 20, 2015 7:43 am | by Mike Williams, Rice Univ. | News | Comments

Mollusks got it right. They have soft innards, but their complex exteriors are engineered to protect them in harsh conditions. Engineers at the Indian Institute of Science and Rice Univ. are beginning to understand why. By modeling the average mollusk’s mobile habitat, they are learning how shells stand up to extraordinary pressures at the bottom of the sea.

Bats sonar secrets could make for better drones

May 19, 2015 8:21 am | by Virginia Tech | Videos | Comments

The U.S. Navy has found that it pays to listen to Rolf Mueller carry on about his bat research. From unmanned aerial systems to undersea communications, practical applications flow from the team headed by Mueller, an associate professor of mechanical engineering.

Advertisement

A foundation for quantum computing

May 19, 2015 8:01 am | by John Toon, Georgia Institute of Technology | News | Comments

Quantum computers are in theory capable of simulating the interactions of molecules at a level of detail far beyond the capabilities of even the largest supercomputers today. Such simulations could revolutionize chemistry, biology and materials science, but the development of quantum computers has been limited by the ability to increase the number of quantum bits, or qubits, that encode, store and access large amounts of data.

Computing at the speed of light

May 18, 2015 11:14 am | by Vincent Horiuchi, Univ. of Utah | News | Comments

Engineers have taken a step forward in creating the next generation of computers and mobile devices capable of speeds millions of times faster than current machines. The Utah engineers have developed an ultracompact beamsplitter for dividing light waves into two separate channels of information. The device brings researchers closer to producing silicon photonic chips that compute and shuttle data with light instead of electrons.

New options for spintronic devices

May 18, 2015 10:46 am | by Helmholtz-Zentrum Berlin | News | Comments

Scientists from Paris and Helmholtz-Zentrum Berlin have been able to switch ferromagnetic domains on and off with low voltage in a structure made of two different ferroic materials. The switching works slightly above room temperature. Their results, which are published online in Scientific Reports, might inspire future applications in low-power spintronics, for instance for fast and efficient data storage.

Liquid-crystal-based compound lenses work like insect eyes

May 18, 2015 10:37 am | by Evan Lerner, Univ. of Pennsylvania | Videos | Comments

The compound eyes found in insects and some sea creatures are marvels of evolution. There, thousands of lenses work together to provide sophisticated information without the need for a sophisticated brain. Human artifice can only begin to approximate these naturally self-assembled structures, and, even then, they require painstaking manufacturing techniques.

Things You Need to Know about Digital Oscilloscopes

May 18, 2015 9:42 am | by Lisa Clark, Product & Test Engineer | Articles | Comments

Oscilloscopes are a staple for any individual or firm involved with electronics and their functioning due to their versatility. An oscilloscope, also called a scope, is a type of electronic test equipment that allows signal voltages to be viewed, usually as a 2-D graph of one or more electrical potential differences (vertical axis) plotted as a function of time or of some other voltage (horizontal axis).

Advertisement

Wearables may get boost from boron-infused graphene

May 18, 2015 7:51 am | by Mike Williams, Rice Univ. | News | Comments

A microsupercapacitor designed by scientists at Rice Univ. that may find its way into personal and even wearable electronics is getting an upgrade. The laser-induced graphene device benefits greatly when boron becomes part of the mix. The Rice lab of chemist James Tour uses commercial lasers to create thin, flexible supercapacitors by burning patterns into common polymers.

Nano-transistor assesses your health via sweat

May 15, 2015 9:23 am | by EPFL | News | Comments

Made from state-of-the-art silicon transistors, an ultra-low power sensor enables real-time scanning of the contents of liquids, such as perspiration. Compatible with advanced electronics, this technology boasts exceptional accuracy – enough to manufacture mobile sensors that monitor health.

Digitizing neurons

May 14, 2015 8:21 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Supercomputing resources at Oak Ridge National Laboratory will support a new initiative designed to advance how scientists digitally reconstruct and analyze individual neurons in the human brain. Led by the Allen Institute for Brain Science, the BigNeuron project aims to create a common platform for analyzing the 3-D structure of neurons.

Controlling swarms of robots with a finger

May 13, 2015 8:05 am | by Jason Maderer, Georgia Institute of Technology | Videos | Comments

Using a smart tablet and a red beam of light, Georgia Institute of Technology researchers have created a system that allows people to control a fleet of robots with the swipe of a finger. A person taps the tablet to control where the beam of light appears on a floor. The swarm robots then roll toward the illumination, constantly communicating with each other and deciding how to evenly cover the lit area.

Pattern recognition using magnonic holographic memory

May 12, 2015 7:55 am | by Sean Nealon, Univ. of California, Riverside | News | Comments

Researchers have successfully demonstrated pattern recognition using a magnonic holographic memory device, a development that could greatly improve speech and image recognition hardware. Pattern recognition focuses on finding patterns and regularities in data. The uniqueness of the demonstrated work is that the input patterns are encoded into the phases of the input spin waves.

An important step in artificial intelligence

May 11, 2015 4:51 pm | by Sonia Fernandez, Univ. of California, Santa Barbara | News | Comments

In what marks a significant step forward for artificial intelligence, researchers at Univ. of California, Santa Barbara, have demonstrated the functionality of a simple artificial neural circuit. For the first time, a circuit of about 100 artificial synapses was proved to perform a simple version of a typical human task: image classification.

Unlocking the creation of wearable electronic devices

May 11, 2015 11:58 am | by Univ. of Exeter | News | Comments

An international team of scientists, including Prof. Monica Craciun from the Univ. of Exeter, have pioneered a new technique to embed transparent, flexible graphene electrodes into fibers commonly associated with the textile industry. The discovery could revolutionize the creation of wearable electronic devices, such as clothing containing computers, phones and MP3 players, which are lightweight, durable and easily transportable.

Last Day for 2015 R&D 100 Award Entries

May 11, 2015 11:15 am | by Lindsay Hock, Editor | News | Comments

The editors of R&D Magazine have announced that today, May 18, 2015, is the last day to accept 2015 R&D 100 Award entries. The R&D 100 Awards have a 50 plus year history of awarding the 100 most technologically significant products of the year.

Removing reflections

May 11, 2015 7:58 am | by Larry Hardesty, MIT News Office | News | Comments

It’s hard to take a photo through a window without picking up reflections of the objects behind you. To solve that problem, professional photographers sometimes wrap their camera lenses in dark cloths affixed to windows by tape or suction cups. But that’s not a terribly attractive option for a traveler using a point-and-shoot camera to capture the view from a hotel room or a seat in a train.

Physicists stop and store light traveling in an optical fiber

May 11, 2015 7:48 am | by Pierre and Marie Curie Univ. | News | Comments

Researchers at the Kastler Brossel Laboratory in Paris have managed to store light that propagates in an optical fiber and to release it later on demand. By causing interaction between the traveling light and a few thousand atoms in the vicinity, they demonstrated an all-fibered memory.

New thin, flat lenses

May 11, 2015 7:35 am | by Adam Hadhazy, Caltech | News | Comments

Lenses appear in all sorts of everyday objects, from prescription eyeglasses to cell phone cameras. Typically, lenses rely on a curved shape to bend and focus light. But in the tight spaces inside consumer electronics and fiber-optic systems, these rounded lenses can take up a lot of room. Over the last few years, scientists have started crafting tiny flat lenses that are ideal for such close quarters.

Smart cane provides facial recognition for blind

May 8, 2015 10:50 am | by Birmingham City Univ. | News | Comments

A revolutionary “smart” cane enabling the visually impaired to instantly identify friends and family could be available soon, thanks to students at Birmingham City Univ. The “XploR” mobility cane, being developed by ICT students Steve Adigbo, Waheed Rafiq and Richard Howlett, uses smartphone technology to recognize familiar faces from up to 10-m away. The cane also features GPS functionality to aid navigation.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading