Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Molecular structure of Hep C envelope protein unveiled

October 10, 2014 9:09 am | by Laura Mgrdichian, Brookhaven National Laboratory | News | Comments

Hepatitis C, an infectious disease of the liver caused by the hepatitis C virus (HCV), affects 160 million people worldwide. There’s no vaccine for HCV and the few treatments that are available do not work on all variants of the virus. Before scientists can develop potential vaccines and additional therapies they must first thoroughly understand the molecular-level activity that takes place when the virus infects a host cell.

Automated imaging system looks underground to improve crops

October 10, 2014 8:22 am | by John Toon, Georgia Institute of Technology | News | Comments

Plant scientists are working to improve important food crops to meet the food needs of a growing world population. However, boosting crop output will require improving more than what can be seen of these plants above the ground. Root systems are essential to gathering water and nutrients, but understanding what’s happening in these unseen parts of the plants has until now depended mostly on lab studies and subjective field measurements.

Snakes and snake-like robots show how sidewinders conquer sandy slopes

October 10, 2014 8:15 am | by John Toon, Georgia Tech and Byron Spice, Carnegie Mellon Univ. | Videos | Comments

The amazing ability of sidewinder snakes to quickly climb sandy slopes was once something biologists only vaguely understood and roboticists only dreamed of replicating. By studying the snakes in a unique bed of inclined sand and using a snake-like robot to test ideas spawned by observing the real animals, both biologists and roboticists have now gained long-sought insights, including how sidewinders effectively traverse sandy slopes.

Advertisement

Charged graphene gives DNA a stage to perform molecular gymnastics

October 10, 2014 8:12 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

When Illinois researchers set out to investigate a method to control how DNA moves through a tiny sequencing device, they didn’t know they were about to witness a display of molecular gymnastics. Fast, accurate and affordable DNA sequencing is the first step toward personalized medicine.

DNA nanofoundries cast custom-shaped metal nanoparticles

October 10, 2014 7:50 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. have unveiled a new method to form tiny 3-D metal nanoparticles in prescribed shapes and dimensions using DNA, nature's building block, as a construction mold. The ability to mold inorganic nanoparticles out of materials such as gold and silver in precisely designed 3-D shapes is a significant breakthrough.

Plant scientist discovers basis of evolution in violins

October 9, 2014 11:34 am | News | Comments

What could the natural diversity and beauty of plant leaves have in common with the violin? Much more than you might imagine. Dan Chitwood of the Donald Danforth Plant Science Center in St. Louis is applying “morphometrics”, which statistically tests hypotheses about factors that affect shape, to changes in the shape of violins over time. His work revealed a strong degree of design transmission and imitation.

Of bio-hairpins and polymer-spaghetti

October 9, 2014 11:02 am | News | Comments

When a sturdy material becomes soft and spongy, one usually suspects damage. But this is not always the case, especially in biological cells. By looking at microscopic biopolymer networks, researchers in Germany revealed that such materials soften by undergoing a transition from an entangled spaghetti of filaments to aligned layers of bow-shaped filaments that slide past each other. This finding may explain how other filaments flow.

Light frequencies sniff out deadly materials from a distance

October 9, 2014 10:56 am | News | Comments

Spectroscopic chemical sensing has great promise, but current technologies lack sensitivity and broad spectral coverage. DARPA’s Spectral Combs from UV to THz (SCOUT) program aims to overcome these limitations. The goal is to develop chip-sized, optical frequency combs that accurately identify even tiny traces of dangerous biological and chemical substances several football fields away, DARPA is now soliciting proposals for a solution.

Advertisement

Nanoparticles get a magnetic handle

October 9, 2014 10:50 am | by David L. Chandler, MIT News Office | Videos | Comments

A long-sought goal of creating particles that can emit a colorful fluorescent glow in a biological environment, and that could be precisely manipulated into position within living cells, has been achieved by a team of researchers at Massachusetts Institute of Technology and several other institutions. The new technology could make it possible to track the position of the nanoparticles as they move within the body or inside a cell.

Electrically conductive plastics promising for batteries, solar cells

October 9, 2014 10:46 am | by Emil Venere, Purdue Univ. | News | Comments

An emerging class of electrically conductive plastics called "radical polymers” may bring low-cost, transparent solar cells, flexible and lightweight batteries, and ultrathin antistatic coatings for consumer electronics and aircraft. Researchers have established the solid-state electrical properties of one such polymer, called PTMA, which is about 10 times more electrically conductive than common semiconducting polymers.

Hybrid materials could smash the solar efficiency ceiling

October 9, 2014 8:57 am | News | Comments

Researchers have developed a new method for harvesting the energy carried by particles known as “dark” spin-triplet excitons with close to 100% efficiency, clearing the way for hybrid solar cells which could far surpass current efficiency limits. To date, this type of energy transfer had only been shown for “bright” spin-singlet excitons.

New weapons against multi-drug resistance in tuberculosis

October 9, 2014 8:51 am | by Nik Papageorgiou, EPFL | News | Comments

Tuberculosis is caused by a bacterium that infects the lungs of an estimated 8.6 million people worldwide. The fight against the disease is hampered by the fact that treatment requires a long time and that the bacterium often develops multi-drug resistance. Scientists have used a sensitive screening assay to test new compounds that can be used against the bacterium, and have discovered two small molecules that show remarkable promise.

NIST quantum probe enhances electric field measurements

October 9, 2014 8:37 am | News | Comments

Researchers at NIST and the Univ. of Michigan have demonstrated a technique based on the quantum properties of atoms that directly links measurements of electric field strength to the International System of Units. The new method could improve the sensitivity, precision and ease of tests and calibrations of antennas, sensors, and biomedical and nano-electronic systems and facilitate the design of novel devices.

Advertisement

New way to extract bone-making cells from fat tissue

October 9, 2014 8:23 am | by David Orenstein, Brown Univ. | News | Comments

Within our fat lives a variety of cells with the potential to become bone, cartilage or more fat if properly prompted. This makes adipose tissue, in theory, a readily available reservoir for regenerative therapies such as bone healing if doctors can get enough of those cells and compel them to produce bone. In a new study, scientists demonstrate a new method for extracting a wide variety of potential bone-producing cells from human fat.

Researchers detect brightest pulsar ever recorded

October 9, 2014 8:09 am | by Jennifer Chu, MIT News Office | News | Comments

Astronomers have detected a pulsating dead star that appears to be burning with the energy of 10 million suns, making it the brightest pulsar ever detected. The pulsar—a rotating, magnetized neutron star—was found in the galaxy Messier 82 (M82), a relatively close galactic neighbor that’s 12 million light-years from Earth.

Technology that controls brain cells with radio waves earns early BRAIN grant

October 8, 2014 12:30 pm | News | Comments

A proposal to develop a new way to remotely control brain cells from Sarah Stanley, a research associate in Rockefeller Univ.’s Laboratory of Molecular Genetics is among the first to receive funding from President Barack Obama’s BRAIN initiative. The project will make use of a technique called radiogenetics that combines the use of radio waves or magnetic fields with nanoparticles to turn neurons on or off.

Breakthrough allows researchers to watch molecules “wiggle”

October 8, 2014 12:11 pm | News | Comments

A new crystallographic technique, called fast time-resolved crystallography, developed in the U.K. is set to transform scientists’ ability to observe how molecules work. Although this method, also known as Laue crystallography, has previously been possible, it has required advanced instrumentation that is only available at three sites worldwide. Only a handful of proteins have been studied using the traditional technique.

Neuroscientists use snail research to help explain “chemo brain”

October 8, 2014 12:00 pm | News | Comments

It is estimated that as many as half of patients taking cancer drugs experience a decrease in mental sharpness, but what causes “chemo brain” has eluded scientists. In the study involving a sea snail that shares many of the same memory mechanisms as humans and a drug used to treat cancer, scientists in Texas identified memory mechanisms blocked by the drug. Then, they were able to counteract the mechanisms by administering another agent.

“Bellhops” in cell walls can double as hormones

October 8, 2014 9:29 am | by SLAC Office of Communications | Videos | Comments

Researchers have discovered that some common messenger molecules in human cells double as hormones when bound to a protein that interacts with DNA. The finding could bring to light a class of previously unknown hormones and lead to new ways to target diseases—including cancers and a host of hormone-related disorders.

Researchers pump up oil accumulation in plant leaves

October 8, 2014 9:20 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Increasing the oil content of plant biomass could help fulfill the nation's increasing demand for renewable energy feedstocks. But many of the details of how plant leaves make and break down oils have remained a mystery. Now a series of detailed genetic studies conducted at Brookhaven National Laboratory reveals previously unknown biochemical details about those metabolic pathways.

Three win Nobel for super-zoom microscopes

October 8, 2014 9:20 am | by Karl Ritter and Malin Rising, Associated Press | News | Comments

Two Americans and a German scientist won the 2014 Nobel Prize in chemistry Wednesday for finding ways to make microscopes more powerful than previously thought possible. Working independently of each other, U.S. researchers Eric Betzig and William Moerner and Stefan Hell of Germany shattered previous limits on the resolution of optical microscopes by using molecules that glow on command to peer inside tiny components of life.

New way to make foams could lead to lightweight, sustainable materials

October 8, 2014 8:30 am | by John Toon, Georgia Institute of Technology | News | Comments

Anyone who has blown a bubble and seen how quickly it pops has first-hand experience on the major challenge in creating stable foams. At its most basic level, foam is a bunch of bubbles squished together. Liquid foams, a state of matter that arises from tiny gas bubbles dispersed in a liquid, are familiar in everyday life, from beer to bathwater. They also are important in commercial products and processes.

Getting metabolism right

October 8, 2014 7:59 am | by Larry Hardesty, MIT News Office | News | Comments

Metabolic networks are mathematical models of every possible sequence of chemical reactions available to an organ or organism, and they’re used to design microbes for manufacturing processes or to study disease. Based on both genetic analysis and empirical study, they can take years to assemble. Unfortunately, a new analytic tool suggests that many of those models may be wrong.

Unconventional photoconduction in an atomically thin semiconductor

October 7, 2014 3:36 pm | by David L. Chandler, MIT | News | Comments

It’s a well-known phenomenon in electronics: Shining light on a semiconductor, such as the silicon used in computer chips and solar cells, will make it more conductive. But now researchers have discovered that in a special semiconductor, light can have the opposite effect, making the material less conductive instead. This new mechanism of photoconduction could lead to next-generation excitonic devices.

DNA linked to how much coffee you drink

October 7, 2014 2:15 pm | by Malcolm Ritter, AP Science Writer | News | Comments

Scientists have long known that your DNA influences how much java you consume. Now a huge study has identified some genes that may play a role. Their apparent effect is quite small. But variations in such genes may modify coffee's effect on a person's health, and so genetic research may help scientists explore that.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading