Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Paper-like material could boost electric vehicle batteries

February 18, 2015 8:58 am | by Sean Nealon, University of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have developed a novel paper-like material for lithium-ion batteries. It has the potential to boost by several times the specific energy, or amount of energy that can be delivered per unit weight of the battery. This paper-like material is composed of sponge-like silicon nanofibers more than 100 times thinner than human hair.

Paving the way for painkillers with fewer side effects

February 18, 2015 8:40 am | by SLAC National Accelerator Laboratory | News | Comments

Researchers have long sought alternatives to morphine that curb its side effects, including dependency, nausea and dizziness. Now, an experiment at SLAC National Accelerator Laboratory has supplied the most complete atomic-scale map of such a compound docked with a cellular receptor that regulates the body’s pain response and tolerance.

Novel crumpling method takes flat graphene from 2-D to 3-D

February 18, 2015 7:54 am | by Rick Kubetz, Univ. of Illinois, Urbana-Champaign | News | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have developed a unique single-step process to achieve 3-D texturing of graphene and graphite. Using a commercially available thermally activated shape-memory polymer substrate, this 3-D texturing, or "crumpling," allows for increased surface area and opens the doors to expanded capabilities for electronics and biomaterials.

Advertisement

Smarter multicore chips

February 18, 2015 7:33 am | by Larry Hardesty, MIT News Office | News | Comments

Computer chips’ clocks have stopped getting faster. To keep delivering performance improvements, chipmakers are instead giving chips more processing units, or cores, which can execute computations in parallel. But the ways in which a chip carves up computations can make a big difference to performance.

Building a more versatile frequency comb

February 17, 2015 7:25 pm | by Amanda Morris, Northwestern Univ. | News | Comments

Frequency combs are the rulers of light. By counting a wavelength's many oscillations, they measure distance and time with extraordinary precision and speed. Since the discovery of optical frequency combs in the 1990s, many applications in metrology, spectroscopy and frequency synthesis have emerged.

Researchers develop algorithm to make simulation of ultra-fast processes possible

February 17, 2015 7:17 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

When electronic states in materials are excited during dynamic processes, interesting phenomena such as electrical charge transfer can take place on quadrillionth-of-a-second, or femtosecond, timescales. Numerical simulations in real time provide the best way to study these processes, but such simulations can be extremely expensive.

Fiber-optic monitoring tools could help industry unlock geothermal energy

February 17, 2015 12:43 pm | by Scott Gordon, Univ. of Wisconsin-Madison | News | Comments

Univ. of Wisconsin-Madison geoscientists and engineers are working with industry partners and the U.S. Dept. of Energy to develop a highly detailed monitoring system for geothermal wells. Man-made geothermal systems that emulate natural ones could, by some conservative estimates, produce a total of 100 gigawatts of cost-competitive electricity over the next 50 years.

A close call of 0.8 light years

February 17, 2015 12:35 pm | by Leonor Sierra, Univ. of Rochester | News | Comments

A group of astronomers from the U.S., Europe, Chile and South Africa have determined that 70,000 years ago a recently discovered dim star is likely to have passed through the solar system's distant cloud of comets, the Oort Cloud. No other star is known to have ever approached our solar system this close—five times closer than the current closest star, Proxima Centauri.

Advertisement

Plants survive better through mass extinctions than animals

February 17, 2015 12:17 pm | by Univ. of Gothenburg | News | Comments

At least five mass extinction events have profoundly changed the history of life on Earth. But a new study led by researchers at the Univ. of Gothenburg shows that plants have been very resilient to those events. For over 400 million years, plants have played an essential role in almost all terrestrial environments and covered most of the world's surface.

New spin on spintronics

February 17, 2015 11:18 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

A team of researchers from the Univ. of Michigan and Western Michigan Univ. is exploring new materials that could yield higher computational speeds and lower power consumption, even in harsh environments. Most modern electronic circuitry relies on controlling electronic charge within a circuit, but this control can easily be disrupted in the presence of radiation, interrupting information processing.

Novel solid-state nanomaterial platform enables terahertz photonics

February 17, 2015 11:11 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Compact, sensitive and fast nanodetectors are considered to be somewhat of a "Holy Grail" sought by many researchers around the world. And now a team of scientists in Italy and France has been inspired by nanomaterials and has created a novel solid-state technology platform that opens the door to the use of terahertz photonics in a wide range of applications.

Ancient rocks show life on Earth 3.2 billion years ago

February 17, 2015 9:13 am | by Hannah Hickey, Univ. of Washington | News | Comments

A spark from a lightning bolt, interstellar dust or a subsea volcano could have triggered the very first life on Earth. But what happened next? Life can exist without oxygen; but without plentiful nitrogen to build genes, life on the early Earth would have been scarce. The ability to use atmospheric nitrogen to support more widespread life was thought to have appeared roughly 2 billion years ago.

The future of electronics could lie in material from the past

February 17, 2015 8:31 am | by Pam Frost Gorder, The Ohio State Univ. | News | Comments

The future of electronics could lie in a material from its past, as researchers from The Ohio State Univ. work to turn germanium, the material of 1940s transistors, into a potential replacement for silicon. At the American Association for the Advancement of Science meeting, Asst. Prof. of Chemistry Joshua Goldberger reported progress in developing a form of germanium called germanane.

Advertisement

Researchers synthesize material for efficient plasmonic devices in mid-infrared range

February 17, 2015 8:14 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team led by North Carolina State Univ. has identified and synthesized a material that can be used to create efficient plasmonic devices that respond to light in the mid-infrared (IR) range. This is the first time anyone has demonstrated a material that performs efficiently in response to this light range, and it has applications in fields ranging from high-speed computers, to solar energy to biomedical devices.

Satellite images reveal ocean acidification from space

February 17, 2015 8:09 am | by Jo Bowler, Univ. of Exeter | News | Comments

Pioneering techniques that use satellites to monitor ocean acidification are set to revolutionize the way that marine biologists and climate scientists study the ocean. This new approach, published in Environmental Science and Technology, offers remote monitoring of large swathes of inaccessible ocean from satellites that orbit the Earth some 700 km above our heads.

UV light sensor for improved fire detection

February 17, 2015 8:02 am | by Amy Sutton, Univ. of Surrey | News | Comments

Researchers at the Univ. of Surrey’s Advanced Technology Institute manipulated zinc oxide, producing nanowires from this readily available material to create an ultraviolet (UV) light detector that is 10,000 times more sensitive to UV light than a traditional zinc oxide detector. Currently, photoelectric smoke sensors detect larger smoke particles found in dense smoke, but are not as sensitive to small particles of smoke.

Promise and Limitations of Lab Automation Systems in R&D

February 13, 2015 3:56 pm | by Tim Studt, Editor-in-Chief | News | Comments

Lab automation systems are used in R&D laboratories for a wide range of operational applications and purposes. According to a recent reader survey performed by the editors of R&D Magazine in late-2014, the top three applications include to improve the accuracy of lab operations (selected by 61% of the readers), to improve lab productivity (58%) and to ensure the reliability of the lab operations (48%).

New self-stretching material developed

February 13, 2015 2:23 pm | by Peter Iglinski, Univ. of Rochester | News | Comments

Although most materials slightly expand when heated, there is a new class of rubber-like material that not only self-stretches upon cooling; it reverts back to its original shape when heated, all without physical manipulation. The material is like a shape-memory polymer because it can be switched between two different shapes.

First glimpse of a chemical bond being born

February 13, 2015 1:49 pm | by Andrew Gordon, SLAC National Accelerator Laboratory | Videos | Comments

Scientists have used an x-ray laser at SLAC National Accelerator Laboratory to get the first glimpse of the transition state where two atoms begin to form a weak bond on the way to becoming a molecule. This fundamental advance, long thought impossible, will have a profound impact on the understanding of how chemical reactions take place.

How iron feels the heat

February 13, 2015 1:34 pm | by Jessica Stoller-Conrad, Caltech | News | Comments

As you heat up a piece of iron, the arrangement of the iron atoms changes several times before melting. This unusual behavior is one reason why steel, in which iron plays a starring role, is so sturdy and ubiquitous in everything from teapots to skyscrapers. But the details of just how and why iron takes on so many different forms have remained a mystery.

Getting in shape

February 13, 2015 1:25 pm | by Kaoru Natori, OIST | News | Comments

New research from the Micro/Bio/Nanofluidics Unit at OIST looks at how to create various non-spherical particles by releasing droplets of molten wax into a cool liquid bath. The physics behind this research shows how a range of non-spherical shapes can be produced and replicated with many possible industrial applications.

3-D Printing Blasts Off, Explodes Into the Future

February 13, 2015 1:15 pm | by Lindsay Hock, Editor | Articles | Comments

In 2013, battle lines were drawn. Two stark competitors were looking to speed repairs and cut costs on parts for gas turbines. First to the drawing board was GE, who started using 3-D printing technology at its Global Research Center in Niskayuna, N.Y., to produce more than 85,000 fuel nozzles for its anticipated LEAP engine technology.

Sustaining a Laboratory Environment

February 13, 2015 1:00 pm | by Lindsay Hock, Editor | Articles | Comments

The design of laboratories for sustainable construction and operation has become a major driver in the A/E/C industry over the past 10 to 15 years. Most large academic, government and corporate laboratory clients are looking for sustainable design approaches at a minimum, and third-party certification, such as LEED, in many cases.

Superior Resolution for the Biological World

February 13, 2015 12:47 pm | by Lindsay Hock, Editor | Articles | Comments

Traditional fluorescence microscopy has suffered from the resolution limits imposed by diffraction and the finite wavelength of light. Classical resolution is typically limited to about 200 nm in xy. Due to the nanoscale architecture of many biological structures, researchers developed super-resolution techniques, starting in the 1990s, to overcome this classical resolution limit in light microscopy.

Giving Design Power to Everyone

February 13, 2015 12:01 pm | by Tim Studt, Editor-in-Chief | Articles | Comments

Multiphysics software has become the simulation tool for designing and optimizing new products. This software can quickly provide designers with multiple options for critical product designs across a range of environmental, physical and chemical operating conditions. Recently introduced multiphysics software enhancements also allow simplified use of these simulation tools across a broader range of users.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading