Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Expanding particles to engineer defects

April 8, 2014 10:41 am | by Amanda Morris, Northwestern Univ. | News | Comments

Materials scientists have long known that introducing defects into 3-D materials can improve their mechanical and electronic properties. Now a new Northwestern Univ. study finds how defects affect 2-D crystalline structures, and the results hold information for designing new materials.

Graphene nanoribbons as electronic switches

April 8, 2014 9:29 am | News | Comments

A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices. The results, obtained by researchers in Argentina and Brazil, yield a clearer theoretical understanding of conductivity in graphene samples of finite size, which have applications in externally controlled electronic devices.

Engineers design video game controller that can sense players’ emotions

April 8, 2014 8:25 am | by Bjorn Carey, Stanford News Service | Videos | Comments

Sometimes, a dozen ravenous zombies just aren't exciting enough to hold a video gamer's interest. The next step in interactive gaming, however, could come in the form of a handheld game controller that gauges the player's brain activity and throws more zombies on the screen when it senses the player is bored.

Advertisement

Personal touch signature makes mobile devices more secure

April 8, 2014 8:05 am | by Jason Maderer, Georgia Institute of Technology | News | Comments

Passwords, gestures and fingerprint scans are all helpful ways to keep a thief from unlocking and using a cell phone or tablet. Cybersecurity researchers from the Georgia Institute of Technology have gone a step further. They’ve developed a new security system that continuously monitors how a user taps and swipes a mobile device.

Synthetic gene circuits pump up cell signals

April 8, 2014 7:56 am | News | Comments

Synthetic genetic circuitry created by researchers at Rice Univ. is helping them see, for the first time, how to regulate cell mechanisms that degrade the misfolded proteins implicated in Parkinson’s, Huntington’s and other diseases. The Rice team has designed a sophisticated circuit that signals increases in the degradation of proteins by the cell’s ubiquitin proteasome system (UPS).

How coughs and sneezes float farther than you think

April 8, 2014 7:42 am | by Peter Dizikes, MIT News Office | News | Comments

The next time you feel a sneeze coming on, raise your elbow to cover up that multiphase turbulent buoyant cloud you’re about to expel. That’s right: A novel study by Massachusetts Institute of Technology researchers shows that coughs and sneezes have associated gas clouds that keep their potentially infectious droplets aloft over much greater distances than previously realized.

Scale model World War II craft takes flight with fuel from the sea

April 7, 2014 6:06 pm | News | Comments

Navy researchers have recently demonstrated sustained flight of a radio-controlled P-51 fighter replica fueled by a new gas-to-liquid process that uses seawater as carbon feedstock. The fuel is made using an innovative and proprietary electrolytic cation exchange module that separates gases from water at 92% efficiency. Catalysis converts the gases to liquid hydrocarbons.

New findings to help extend high efficiency solar cells’ lifetime

April 7, 2014 1:27 pm | by Kathleen Estes, Okinawa Institute of Science and Technology | News | Comments

Solid-state dye-sensitized solar cells have shown their potential in achieving high efficiency with a low cost of fabrication. Degradation of these cells shortens lifespan dramatically, however, and the causes of this are not well understood. After a detailed analysis, researchers in Okinawa have determined which material in the cells was degrading, and why.

Advertisement

Trees go high-tech: Process turns cellulose into energy storage devices

April 7, 2014 1:19 pm | News | Comments

Chemists have found that cellulose, the most abundant organic polymer on Earth, can be heated in a furnace in the presence of ammonia and turned into the building blocks for supercapacitors. The new process produces nitrogen-doped, nanoporous carbon membranes, which act as the electrodes of a supercapacitor. The only byproduct is methane, which could be used immediately as a fuel or for other purposes.

Organic solar cells more efficient with molecules face-to-face

April 7, 2014 11:02 am | by Tracey Peake, North Carolina State Univ. | News | Comments

New research from North Carolina State Univ. and UNC-Chapel Hill reveals that energy is transferred more efficiently inside of complex, 3-D organic solar cells when the donor molecules align face-on, rather than edge-on, relative to the acceptor. This finding may aid in the design and manufacture of more efficient and economically viable organic solar cell technology.

Gravity measurements confirm subsurface ocean on Enceladus

April 7, 2014 9:18 am | by Kimm Fesenmaier, Caltech | News | Comments

In 2005, NASA's Cassini spacecraft sent pictures back to Earth depicting an icy Saturnian moon spewing water vapor and ice from fractures, known as "tiger stripes," in its frozen surface. It was big news that tiny Enceladus was such an active place. Since then, scientists have hypothesized that a large reservoir of water lies beneath that icy surface, possibly fueling the plumes.

How Earth got its plated shell

April 7, 2014 9:03 am | by Eric Gershon, Yale Univ. | News | Comments

New Yale Univ.-led research suggests how and when Earth came to develop one of its most distinct features—rigid tectonic plates—and why Venus, Earth’s twin-like neighbor, never has. Earth has a unique network of shifting plates embedded in its cold and rocky outermost layer, the lithosphere. The motion of these plates drives many Earth processes, while also stabilizing the planet’s climate and enabling life.

Rebar technique strengthens case for graphene

April 7, 2014 7:57 am | News | Comments

Carbon nanotubes are reinforcing bars that make 2-D graphene much easier to handle in a new hybrid material grown by researchers at Rice Univ. The Rice laboratory of chemist James Tour set nanotubes into graphene in a way that not only mimics how steel rebar is used in concrete but also preserves and even improves the electrical and mechanical qualities of both.

Advertisement

Optical device could enhance optical information processing, computers

April 7, 2014 7:45 am | by Jo Seltzer, Washington Univ., St. Louis | News | Comments

At St. Paul’s Cathedral in London, a section of the dome called the Whispering Gallery makes a whisper audible from the other side of the dome as a result of the way sound waves travel around the curved surface. Researchers at Washington Univ. in St. Louis have used the same phenomenon to build an optical device that may lead to new and more powerful computers that run faster and cooler.

Self-assembled silver superlattices create molecular machines

April 7, 2014 7:34 am | by John Toon, Georgia Institute of Technology | News | Comments

A combined computational and experimental study of self-assembled silver-based structures known as superlattices has revealed an unusual and unexpected behavior: arrays of gear-like molecular-scale machines that rotate in unison when pressure is applied to them.

Algorithm can help robots determine orientation of objects

April 4, 2014 3:27 pm | News | Comments

Researchers are working on a new algorithm that could make re-identification much easier for computers by identifying the major orientations in 3-D scenes. The same algorithm could also simplify the problem of scene understanding, one of the central challenges in computer vision research.  

Nanostructures show promise for efficient LEDs

April 4, 2014 3:05 pm | News | Comments

Nanostructures half the breadth of a DNA strand could improve the efficiency of light emitting diodes (LEDs), especially in the “green gap,” a portion of the spectrum where LED efficiency plunges.               

Tiny, wireless sensing device remotely alerts users to tell-tale vapors

April 4, 2014 2:52 pm | News | Comments

A research team has developed a small electronic sensing device that can alert users wirelessly to the presence of chemical vapors in the atmosphere.                              

'Unzipping' poplars' biofuel potential

April 4, 2014 2:26 pm | News | Comments

New research is focusing on enhancing poplar trees so they can break down easier and thus improving their viability as a biofuel. The long-term efforts and teamwork involved to find this solution can be described as a rare, top-down approach to engineering plants for digestibility.

Researchers probe the next generation of 2-D material

April 4, 2014 9:34 am | by Institute of Physics | News | Comments

As the properties and applications of graphene continue to be explored in laboratories all over the world, a growing number of researchers are looking beyond the one-atom-thick layer of carbon for alternative materials that exhibit similarly captivating properties.

Quantum photon properties revealed in another particle

April 4, 2014 9:23 am | by Caltech | News | Comments

Results from a recent applied science study at Caltech support the idea that waveguides coupled with another quantum particle—the surface plasmon—could also become an important piece of the quantum computing puzzle.               

Scientist developing materials, electronics that dissolve when triggered

April 4, 2014 9:12 am | by Iowa State University | News | Comments

A medical device, once its job is done, could harmlessly melt away inside a person’s body. Or, a military device could collect and send its data and then dissolve away, leaving no trace of an intelligence mission. Or, an environmental sensor could collect climate information, then wash away in the rain. It’s a new way of looking at electronics.

Fermi data tantalize with new clues to dark matter

April 4, 2014 9:05 am | by Fermi | News | Comments

A new study of gamma-ray light from the center of our galaxy makes the strongest case to date that some of this emission may arise from dark matter, an unknown substance making up most of the material universe.                               

Chemists settle debate about conversion of light

April 3, 2014 1:54 pm | News | Comments

Chemists have settled the debate about a fundamental question that is relevant to the conversion of one color into another and demonstrated how to influence the efficiency of this process by changing the refractive index around the material.  

Researchers make clothes from sugar

April 3, 2014 1:25 pm | News | Comments

In the future, the clothes you wear could be made from sugar. Researchers have discovered a new chemical process that can convert adipic acid directly from sugar.                         

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading