Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Inventor pushes solar panels for roads, highways

July 11, 2014 11:33 am | by Nicholas K. Geranios, Associated Press | News | Comments

The solar panels that Idaho inventor Scott Brusaw has built aren't meant for rooftops. They are meant for roads, driveways, parking lots, bike trails and, eventually, highways. Brusaw, an electrical engineer, says the hexagon-shaped panels can withstand the wear and tear that comes from inclement weather and vehicles, big and small, to generate electricity.

Sun-like stars reveal their ages

July 11, 2014 8:49 am | News | Comments

Defining what makes a star “sun-like" is as difficult as defining what makes a planet "Earth-like." A solar twin should have a temperature, mass and spectral type similar to our sun. We also would expect it to be about 4.5 billion years old. However, it is notoriously difficult to measure a star's age so astronomers usually ignore age when deciding if a star counts as "sun-like."

Sophisticated radiation detector designed for broad public use

July 11, 2014 8:38 am | by David Stauth, Oregon State Univ. | News | Comments

Nuclear engineers at Oregon State Univ. have developed a small, portable and inexpensive radiation detection device that should help people all over the world better understand the radiation around them, its type and intensity and whether or not it poses a health risk.

Advertisement

Astronomers discover seven dwarf galaxies

July 11, 2014 8:30 am | by Jim Shelton, Yale Univ. | News | Comments

Meet the seven new dwarf galaxies. Yale Univ. astronomers, using a new type of telescope made by stitching together telephoto lenses, recently discovered seven celestial surprises while probing a nearby spiral galaxy. The previously unseen galaxies may yield important insights into dark matter and galaxy evolution, while possibly signaling the discovery of a new class of objects in space.

Uncertainty gives scientists new confidence in search for novel materials

July 11, 2014 8:19 am | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

Scientists at Stanford Univ. and the Dept. of Energy (DOE)’s SLAC National Accelerator Laboratory have found a way to estimate uncertainties in computer calculations that are widely used to speed the search for new materials for industry, electronics, energy, drug design and a host of other applications. The technique, reported in Science, should quickly be adopted in studies that produce some 30,000 scientific papers per year.

Agile Aperture Antenna tested on aircraft to survey ground emitters

July 11, 2014 8:02 am | by John Toon, Georgia Institute of Technology | News | Comments

The Georgia Tech Research Institute’s software-defined, electronically reconfigurable Agile Aperture Antenna (A3) has now been tested on the land, sea and air. Dept. of Defense representatives were in attendance during a recent event where two of the low-power devices, which can change beam directions in a thousandth of a second, were demonstrated in an aircraft during flight tests held in Virginia during February 2014.

Bacteria: A day in the life

July 11, 2014 7:50 am | by Jennifer Chu, MIT News Office | News | Comments

We are all creatures of habit, and a new study finds ocean bacteria are no exception. In a paper published in Science, researchers report that microbes in the open ocean follow predictable patterns of biological activity, such as eating, breathing and growing. Certain species are early risers, exhibiting genetic signs of respiration, metabolism and protein synthesis in the morning hours, while others rouse to action later in the day.

New technology offers precise control of molecular self-assembly

July 10, 2014 5:09 pm | News | Comments

A research group based in Japan has developed a new methodology that can easily and precisely control the timing, structure, and functions in the self-assembly of pi-conjugated molecules, which are an important enabling building block in the field of organic electronics. One of the key steps is keeping these molecules in a liquid form at room temperature.

Advertisement

Silicon oxide memories catch manufacturers’ eye

July 10, 2014 5:06 pm | by Jade Boyd, Rice Univ. | News | Comments

First developed five years ago at Rice Univ., silicon oxide memories are a type of two-terminal, “resistive random-access memory” (RRAM) technology that beats flash memory’s data density by a factor of 50. At Rice, the laboratory of chemist and 2013 R&D Magazine Scientist of the Year James Tour has recently developed a new version of RRAM that Tour believes outperforms more than a dozen competing versions.

“Nanopixels” promise thin, flexible high-res displays

July 10, 2014 9:35 am | News | Comments

A team in the U.K. has found that by sandwiching a 7-nm thick layer of a phase change material between two layers of a transparent electrode they could use a tiny current to “draw” images within the sandwich “stack”. The discovery could make it possible to create pixels just a few hundred nanometers across and pave the way for extremely high-resolution and low-energy thin, flexible displays.

Speeding up data storage by a thousand times with “spin current”

July 10, 2014 9:31 am | News | Comments

Spin current, in which an ultra-short laser pulse generates electrons all with the same spin, is a promising new technology which potentially allows data to be stored 1,000 times as fast as traditional hard drive. Researchers in The Netherlands have recently shown that generated spin current is actually able to cause a change in magnetization, hinting at practical application in the future.

Study pushes limits of ultra-fast nanodevices

July 10, 2014 9:17 am | by Univ. of Illinois, Urbana-Champaign | News | Comments

A recent study by researchers at the Univ. of Illinois at Urbana-Champaign provides new insights on the physical mechanisms governing the interplay of spin and heat at the nanoscale, and addresses the fundamental limits of ultra-fast spintronic devices for data storage and information processing.

NASA finds friction from tides could help distant Earths survive, thrive

July 10, 2014 8:56 am | by Elizabeth Zubritsky, NASA Goddard Space Flight Center | News | Comments

As anybody who has started a campfire by rubbing sticks knows, friction generates heat. Now, computer modeling by NASA scientists shows that friction could be the key to survival for some distant Earth-sized planets traveling in dangerous orbits. The findings are consistent with observations that Earth-sized planets appear to be very common in other star systems.

Advertisement

Heads up, World Cup teams: The robots are coming

July 10, 2014 8:33 am | by Kathy Matheson, Associated Press | News | Comments

When robots first started playing soccer, it was a challenge for them just to see the ball. And to stay upright. But the machines participating in this month's international RoboCup tournament are making passes and scoring points. Their ultimate goal? To beat the human World Cup champs within the next 35 years.

Figuring out methane’s role in the climate puzzle

July 10, 2014 8:30 am | News | Comments

The U.S. may be on the verge of an economy driven by methane, the primary component of natural gas, which burns cleaner than coal and is undergoing a production boom. It has poised the country as a top fuel producer globally, but recent research is casting serious doubts over just how climate friendly it is, according to an article in Chemical & Engineering News (C&EN).

Postcards from the photosynthetic edge

July 10, 2014 7:54 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A crucial piece of the puzzle behind nature’s ability to split the water molecule during photosynthesis that could help advance the development of artificial photosynthesis for clean, green and renewable energy has been provided by an international collaboration of scientists led by researchers with the Lawrence Berkeley National Laboratory and the SLAC National Accelerator Laboratory.

Technology illuminates colder objects in deep space

July 10, 2014 7:42 am | News | Comments

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern Univ. team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space. The new technology uses a type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb).

Study cracks how the brain processes emotions

July 10, 2014 7:35 am | by Melissa Osgood, Cornell Univ. | News | Comments

Although feelings are personal and subjective, the human brain turns them into a standard code that objectively represents emotions across different senses, situations and even people. A Cornell Univ. team's findings provide insight into how the brain represents our innermost feelings and upend the long-held view that emotion is represented in the brain simply by activation in specialized regions for positive or negative feelings.

Own your own data

July 10, 2014 7:28 am | by Larry Hardesty, MIT News Office | News | Comments

Cell phone metadata has been in the news quite a bit lately, but the National Security Agency isn’t the only organization that collects information about people’s online behavior. Newly downloaded cell phone apps routinely ask to access your location information, your address book or other apps, and of course, Websites like Amazon or Netflix track your browsing history in the interest of making personalized recommendations.

Even geckos can lose their grip

July 9, 2014 2:17 pm | News | Comments

Geckos and spiders seem to be able to sit still forever upside down. But sooner or later the grip is lost, no matter how little force is acting on it. Engineers, using scanning electron microscopy, have recently demonstrated why this is so by showing how heat, and the subsequent movement of molecules at the nanoscale, eventually force loss of adhesion.

Highway for ultracold atoms in light crystals

July 9, 2014 2:10 pm | News | Comments

When a superconductor is exposed to a magnetic field, a surface current creates a magnetic field that cancels the field inside the superconductor. This phenomenon, known as the Meissner-Ochsenfeld effect, was first observed in 1933. In a research first, scientists have succeeded in measuring an analogue of the Meissner effect in an optical crystal with ultracold atoms. This validates theoretical predictions dating back more than 20 years.

Mercury: A result of early hit-and-run collisions

July 9, 2014 11:02 am | by Nikki Cassis, Arizona State Univ. | News | Comments

Planet Mercury’s unusual metal-rich composition has been a longstanding puzzle in planetary science. According to a study published online in Nature Geoscience, Mercury and other unusually metal-rich objects in the solar system may be relics left behind by collisions in the early solar system that built the other planets.

Engineering a more efficient fuel cell

July 9, 2014 10:38 am | by Glen Martin, Stanford New Service | News | Comments

Using high-brilliance x-rays, Stanford Univ. researchers track the process that fuel cells use to produce electricity, knowledge that will help make large-scale alternative energy power systems more practical and reliable. Fuel cells use oxygen and hydrogen as fuel to create electricity; if the process were run in reverse, the fuel cells could be used to store electricity, as well.  

Chemists develop novel catalyst with two functions

July 9, 2014 8:47 am | by Dr. Julia Weiler, Ruhr Univ. Bochum | News | Comments

A new type of catalyst, based on carbon, can facilitate two opposite reactions: electrolysis of water and combustion of hydrogen with oxygen. This bi-functionality, developed by researchers in Germany, is made possible from its construction: manganese-oxide or cobalt-oxide nanoparticles which are embedded in specially modified carbon, then integrated with nitrogen atoms in specific positions.

Unprecedented detail of intact neuronal receptor offers blueprint for drug developers

July 9, 2014 8:23 am | by Tona Kunz, Argonne National Laboratory | News | Comments

Scientists succeeded in obtaining an unprecedented view of a type of brain cell receptor that is implicated in a range of neurological illnesses. The team of biologists at Cold Spring Harbor Laboratory used the Advanced Photon Source at Argonne National Laboratory to get an atomic-level picture of the intact NMDA (N-methyl, D-aspartate) receptor should serve as template and guide for the design of therapeutic compounds.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading