Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Extent of moon’s giant volcanic eruption is revealed

March 18, 2015 9:59 am | by Leighton Kitson, Durham Univ. | News | Comments

Scientists have produced a new map of the moon’s most unusual volcano showing that its explosive eruption spread debris over an area much greater than previously thought. A team of astronomers and geologists, led by experts at Durham Univ., U.K., studied an area of the lunar surface in the Compton-Belkovich Volcanic Complex.

Light as a puppeteer

March 18, 2015 9:24 am | by Laura Petersen, OIST | Videos | Comments

Researchers at the OIST have demonstrated a more robust method for controlling single, micron-sized particles with light. Passing light along optical microfibers or nanofibers to manipulate particles has gained popularity in the past decade and has an array of promising applications in physics and biology. Most research has focused on using this technique with the basic profile of light.

Iron rain fell on early Earth

March 18, 2015 8:17 am | by Neal Singer, Sandia National Laboratories | News | Comments

Researchers at Sandia National Laboratories’ Z machine have helped untangle a long-standing mystery of astrophysics: Why iron is found spattered throughout Earth’s mantle, the roughly 2,000-mile thick region between Earth’s core and its crust.

Advertisement

Cool process to make better graphene

March 18, 2015 8:05 am | by Ker Than, Caltech | News | Comments

A new technique invented at Caltech to produce graphene at room temperature could help pave the way for commercially feasible graphene-based solar cells and LEDs, large-panel displays and flexible electronics. With the new technique, researchers can grow large sheets of electronic-grade graphene in much less time and at much lower temperatures.

Minimal device maximizes macula imaging

March 18, 2015 7:49 am | by Mike Williams, Rice Univ. | Videos | Comments

A smart and simple method developed at Rice Univ. to image a patient’s eye could help monitor eye health and spot signs of macular degeneration and diabetic retinopathy, especially in developing nations. The patient-operated, portable device invented at Rice is called mobileVision. It can be paired with a smartphone to give clinicians finely detailed images of the macula, without artificially dilating the pupil.

A call to change recycling standards as 3D printing expands

March 17, 2015 4:31 pm | by Allison Mills, Michigan Technological Univ. | News | Comments

The 3D printing revolution has changed the way we think about plastics. Everything from children’s toys to office supplies to high-value laboratory equipment can be printed. The potential savings of producing goods at the household- and lab-scale is remarkable, especially when producers use old prints and recycle them.

Textured rubber that grips slick, icy surfaces

March 17, 2015 4:08 pm | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Winter storms dumped records amounts of snow on the East Coast this February, leaving treacherous, icy sidewalks and roads in their wake. Now researchers from Canada are developing new methods to mass-produce a material that may help pedestrians get a better grip on slippery surfaces. The material, which is made up of glass fibers embedded in a compliant rubber, could one day be used in the soles of slip-resistant winter boots.

Data structures influence speed of quantum search in unexpected ways

March 17, 2015 3:25 pm | by Susan Brown, Univ. of California, San Diego | News | Comments

Using the quantum property of superposition, quantum computers will be able to find target items within large piles of data far faster than conventional computers ever could. But the speed of the search will likely depend on the structure of the data. Such a search would proceed as a quantum particle jumps from one node of a connected set of data to another. Intuition says that the search would be fastest in a highly connected database.

Advertisement

“Smart bandage” detects bed sores before they are visible

March 17, 2015 2:23 pm | by Sarah Yang, Univ. of California, Berkeley | Videos | Comments

Engineers at the Univ. of California, Berkeley, are developing a new type of bandage that does far more than stanch the bleeding from a paper cut or scraped knee. Thanks to advances in flexible electronics, the researchers have created a new “smart bandage” that uses electrical currents to detect early tissue damage from pressure ulcers, or bedsores, before they can be seen by human eyes, and while recovery is still possible.

How rocket science may improve kidney dialysis

March 17, 2015 2:03 pm | by Jason Socrates Bardi, American Institute of Physics | News | Comments

A team of researchers in the U.K. has found a way to redesign an artificial connection between an artery and vein, known as an Arterio-Venous Fistulae, which surgeons form in the arms of people with end-stage renal disease so that those patients can receive routine dialysis, filtering their blood and keeping them alive after their kidneys fail.

The secret to an effortless, split-second slime attack

March 17, 2015 1:47 pm | by Caroline Perry, Harvard Univ. | News | Comments

The velvet worm is a slow-moving, unassuming creature. With its soft body, probing antennae and stubby legs, it looks like a slug on stilts as it creeps along damp logs in tropical climates. But it has a secret weapon. In the dark of night, when an unsuspecting cricket or termite crosses its path, the worm unleashes an instantaneous torrent of slime.

A better way of scrubbing carbon dioxide

March 17, 2015 12:46 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A means by which the removal of carbon dioxide from coal-fired power plants might one day be done far more efficiently and at far lower costs than today has been discovered by a team of researchers with the Lawrence Berkeley National Laboratory. By appending a diamine molecule to the sponge-like solid materials known as MOFs, the researchers were able to more than triple the carbon dioxide-scrubbing capacity of the MOFs.

Graphene membrane could lead to better fuel cells, water filters

March 17, 2015 12:32 pm | by Walt Miss, Penn State Univ. | Videos | Comments

An atomically thin membrane with microscopically small holes may prove to be the basis for future hydrogen fuel cells, water filtering and desalination membranes, according to a group of 15 theorists and experimentalists. The team tested the possibility of using graphene as a separation membrane in water and found that naturally occurring defects allowed hydrogen protons to cross the barrier at unprecedented speeds.

Advertisement

Researchers collaborate to develop revolutionary 3D printing technology

March 17, 2015 10:30 am | by Univ. of North Carolina, Chapel Hill | Videos | Comments

A 3D printing technology developed by Silicon Valley startup, Carbon3D Inc., enables objects to rise from a liquid media continuously rather than being built layer-by-layer as they have been for the past 25 years, representing a fundamentally new approach to 3D printing. The technology allows ready-to-use products to be made 25 to 100 times faster than other methods.

Nanospheres cooled with light to explore the limits of quantum physics

March 17, 2015 10:19 am | by Univ. College London | News | Comments

A team of scientists at Univ. College London has developed a new technology which could one day create quantum phenomena in objects far larger than any achieved so far. The team successfully suspended glass particles 400 nm across in a vacuum using an electric field, then used lasers to cool them to within a few degrees of absolute zero. These are the key prerequisites for making an object behave according to quantum principles.

Filtration Revealed Through Tests of Precision

March 17, 2015 9:29 am | by Chandreyee Das, PhD, Sample Preparation and Protein Detection, EMD Millipore | Articles | Comments

Repeatability underlies a researcher’s ability to control variation and increase sensitivity in an experiment. For sensitive analyses, such as cell-based assays, mass spectrometry and high-resolution protein structure determination, precise repeatability requires careful factorial design of experiments by systematically varying experimental parameters.

Opening a window on quantum gravity

March 17, 2015 9:11 am | by Yale Univ. | News | Comments

Yale Univ. has received a grant from the W. M. Keck Foundation to fund experiments that researchers hope will provide new insights into quantum gravity. Jack Harris, associate professor of physics, will lead a Yale team that aims to address a long-standing question in physics: how the classical behavior of macroscopic objects emerges from microscopic constituents that obey the laws of quantum mechanics.

Additive manufacturing could greatly improve diabetes management

March 17, 2015 8:55 am | by David Stauth, Oregon State Univ. | News | Comments

Engineers at Oregon State Univ. have used additive manufacturing to create an improved type of glucose sensor for patients with Type 1diabetes, part of a system that should work better, cost less and be more comfortable for the patient. A key advance is use of electrohydrodynamic jet, or “e-jet” printing, to make the sensor.

Clean energy future

March 17, 2015 8:16 am | by Deborah Smith, Univ. of New South Wales | News | Comments

Univ. of New South Wales Australia scientists have developed a highly efficient oxygen-producing electrode for splitting water that has the potential to be scaled up for industrial production of the clean energy fuel, hydrogen. The new technology is based on an inexpensive, specially coated foam material that lets the bubbles of oxygen escape quickly.

New trigger of cellular self-destruction identified

March 17, 2015 8:03 am | by Elizabeth Gardner, Purdue Univ. | News | Comments

Researchers have identified a bacterial protein that triggers a self-inflicted cell death pathway in immune system cells and could lead to a better understanding of an important cellular structure. The protein initiates a cascade of events that leads the lysosome to open holes in its membrane and release enzymes that destroy the cell.

Second minor planet may possess Saturn-like rings

March 17, 2015 7:43 am | by Jennifer Chu, MIT News Office | News | Comments

There are only five bodies in our solar system that are known to bear rings. The most obvious is the planet Saturn; to a lesser extent, rings of gas and dust also encircle Jupiter, Uranus and Neptune. The fifth member of this haloed group is Chariklo, one of a class of minor planets called centaurs: small, rocky bodies that possess qualities of both asteroids and comets.

Supercomputers help solve puzzle-like bond for biofuels

March 16, 2015 4:25 pm | by Jorge Salazar, TACC | News | Comments

One of life's strongest bonds has been discovered by a science team researching biofuels with the help of supercomputers. Their find could boost efforts to develop catalysts for biofuel production from non-food waste plants.

Consistency: The key to success in bread baking, biology

March 16, 2015 4:08 pm | by Jim Erickson, Univ. of Michigan | News | Comments

Whether you're baking bread or building an organism, the key to success is consistently adding ingredients in the correct order and in the right amounts, according to a new genetic study by Univ. of Michigan researchers. Using the baker's yeast Saccharomyces cerevisiae, the team developed a novel way to disentangle the effects of random genetic mutations and natural selection on the evolution of gene expression.

Second natural quasicrystal found in ancient meteorite

March 16, 2015 3:17 pm | by Catherine Zandonella, Princeton Univ. | News | Comments

A team from Princeton Univ. and the Univ. of Florence in Italy has discovered a quasicrystal in a 4.5-billion-year-old meteorite from a remote region of northeastern Russia, bringing to two the number of natural quasicrystals ever discovered. Prior to the team finding the first natural quasicrystal in 2009, researchers thought that the structures were too fragile and energetically unstable to be formed by natural processes.

New insights into radiation damage evolution

March 16, 2015 3:02 pm | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

Two reports from Los Alamos National Laboratory in Scientific Reports are helping crack the code of how certain materials respond in the highly damaging radiation environments within a nuclear reactor. The goal of these efforts is to understand at an atomistic level just how materials develop defects during irradiation, and how those defects evolve to determine the ultimate fate of the material.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading