Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

As temperatures rise, soil will relinquish less carbon to atmosphere

November 18, 2014 8:26 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Here’s another reason to pay close attention to microbes: Current climate models probably overestimate the amount of carbon that will be released from soil into the atmosphere as global temperatures rise, according to research from Lawrence Berkeley National Laboratory. The findings are from a new computer model that explores the feedbacks between soil carbon and climate change.

Two sensors in one

November 18, 2014 8:10 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemists have developed new nanoparticles that can simultaneously perform magnetic resonance imaging (MRI) and fluorescent imaging in living animals. Such particles could help scientists to track specific molecules produced in the body, monitor a tumor’s environment, or determine whether drugs have successfully reached their targets.

Chemical disguise transforms RNAi drug delivery

November 18, 2014 7:57 am | by Heather Buschman, Univ. of California, San Diego | News | Comments

Small pieces of synthetic RNA trigger a RNA interference (RNAi) response that holds great therapeutic potential to treat a number of diseases, especially cancer and pandemic viruses. The problem is delivery: It’s extremely difficult to get RNAi drugs inside the cells in which they are needed.

Advertisement

Researchers create, control spin waves

November 18, 2014 7:50 am | by James Devitt, New York Univ. | News | Comments

A team of New York Univ. and Univ. of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.

Study: Polar bears disappearing from key region

November 17, 2014 5:01 pm | by Seth Borenstein - AP Science Writer - Associated Press | News | Comments

A key polar bear population fell nearly by half in the past decade, a new U.S.-Canada study found, with scientists seeing a dramatic increase in young cubs starving and dying. Researchers chiefly blame shrinking sea ice from global warming. Scientists from the U.S. Geological Survey and Environment Canada captured, tagged and released polar bears in the southern Beaufort Sea from 2001 to 2010.

Advance in cryopreservation could change management of world blood supplies

November 17, 2014 3:58 pm | by David Stauth, Oregon State Univ. | News | Comments

Engineers at Oregon State Univ. have identified a method to rapidly prepare frozen red blood cells for transfusions, which may offer an important new way to manage the world’s blood supply. It’s already possible to cryopreserve human red blood cells in the presence of 40% glycerol, but is rarely done because of the time-consuming process to thaw and remove the glycerol from the blood.

Mixing light at the nanoscale

November 17, 2014 3:46 pm | by Evan Lerner, Univ. of Pennsylvania | News | Comments

The race to make computer components smaller and faster and use less power is pushing the limits of the properties of electrons in a material. Photonic systems could eventually replace electronic ones, but the fundamentals of computation, mixing two inputs into a single output, currently require too much space and power when done with light.

Graphene/nanotube hybrid benefits flexible solar cells

November 17, 2014 3:37 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have invented a novel cathode that may make cheap, flexible dye-sensitized solar cells practical. The Rice laboratory of materials scientist Jun Lou created the new cathode, one of the two electrodes in batteries, from nanotubes that are seamlessly bonded to graphene and replaces the expensive and brittle platinum-based materials often used in earlier versions.

Advertisement

Solar-friendly form of silicon shines

November 17, 2014 11:16 am | by Carnegie Institute | News | Comments

Silicon is the second-most-abundant element in the Earth's crust. When purified, it takes on a diamond structure, which is essential to modern electronic devices—carbon is to biology as silicon is to technology. A team of Carnegie scientists has synthesized an entirely new form of silicon, one that promises even greater future applications.

Artificial muscle can “remember” movements

November 17, 2014 11:07 am | by Univ. of Cambridge | News | Comments

Researchers from the Univ. of Cambridge have developed artificial muscles which can learn and recall specific movements, the first time that motion control and memory have been combined in a synthetic material. The muscles, made from smooth plastic, could eventually be used in a applications where mimicking the movement of natural muscle would be an advantage, such as robotics, aerospace, exoskeletons and biomedical applications.

Chemical in coffee may help prevent obesity-related disease

November 17, 2014 10:33 am | by James Hataway, Univ. of Georgia | News | Comments

Researchers at the Univ. of Georgia have discovered that a chemical compound commonly found in coffee may help prevent some of the damaging effects of obesity. In a recently published paper published, scientists found that chlorogenic acid, or CGA, significantly reduced insulin resistance and accumulation of fat in the livers of mice who were fed a high-fat diet.

Spiral laser beam creates quantum whirlpool

November 17, 2014 10:24 am | by Australian National Univ. | News | Comments

Physicists at Australian National Univ. have engineered a spiral laser beam and used it to create a whirlpool of hybrid light-matter particles called polaritons. The ability to control polariton flows in this way could aid the development of completely novel technology to link conventional electronics with new laser and fiber-based technologies.

Efficient method developed to measure residual stress in 3-D printed parts

November 17, 2014 10:08 am | by Kenneth Ma, LLNL | News | Comments

Lawrence Livermore National Laboratory researchers have developed an efficient method to measure residual stress in metal parts produced by powder-bed fusion additive manufacturing. This 3-D printing process produces metal parts layer by layer using a high-energy laser beam to fuse metal powder particles.

Advertisement

Artificial intelligence magic tricks

November 17, 2014 8:46 am | by Queen Mary Univ. of London | Videos | Comments

Researchers from the Queen Mary Univ. of London gave a computer program the outline of how a magic jigsaw puzzle and a mind-reading card trick work, as well the results of experiments into how humans understand magic tricks, and the system created completely new variants on those tricks which can be delivered by a magician.

New method for methanol processing could reduce carbon dioxide emissions

November 17, 2014 8:33 am | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

Researchers at the Univ. of California, Los Angeles Henry Samueli School of Engineering and Applied Science have developed a more efficient way to turn methanol into useful chemicals, such as liquid fuels, and that would also reduce carbon dioxide emissions. Methanol, which is a product of natural gas, is well-known as a common “feedstock” chemical.

Lighting the way for future electronic devices

November 17, 2014 8:15 am | by Univ. of Southampton | News | Comments

Researchers at the Univ. of Southampton have demonstrated how glass can be manipulated to create electronic devices that will be smaller, faster and consume less power. The researchhas the potential to allow faster, more efficient electronic devices; further shrinking the size of our phones, tablets and computers and reducing their energy consumption by turning waste heat into power.

Researchers discern the shapes of high-order Brownian motions

November 17, 2014 7:57 am | by Case Western Reserve Univ. | News | Comments

For the first time, scientists have vividly mapped the shapes and textures of high-order modes of Brownian motions—in this case, the collective macroscopic movement of molecules in microdisk resonators—researchers at Case Western Reserve Univ. report. To do this, they used a record-setting scanning optical interferometry technique.

Motion-induced quicksand

November 17, 2014 7:45 am | by Jennifer Chu, MIT News Office | News | Comments

From a mechanical perspective, granular materials are stuck between a rock and a fluid place, with behavior resembling neither a solid nor a liquid. Think of sand through an hourglass: As grains funnel through, they appear to flow like water, but once deposited, they form a relatively stable mound, much like a solid.

Evolution of NIR Spectroscopy: Past, Present and Future

November 14, 2014 4:04 pm | by Joe Siddall, TI DLP Embedded Products Program Manager | Articles | Comments

Near-infrared (NIR) spectrometers have been around for over 60 years, yet only a small fraction of the population is familiar with these dependable tools. It’s astounding that NIR spectroscopy does so much for so many people who have never heard the word “spectrometer.” NIR spectrometers help a diverse set of users make decisions in their daily jobs.

LLNL, IBM to deliver next-generation supercomputer

November 14, 2014 11:01 am | by Lynda L. Seaver, Lawrence Livermore National Laboratory | News | Comments

Lawrence Livermore National Laboratory (LLNL) announced a contract with IBM to deliver a next-generation supercomputer in 2017. The system, to be called Sierra, will serve the National Nuclear Security Administration’s Advanced Simulation and Computing program. Procurement of Sierra is part of a DOE-sponsored Collaboration of Oak Ridge, Argonne and Lawrence Livermore national labs to accelerate the development of high-performance computing.

New form of crystalline order holds promises for thermoelectric applications

November 14, 2014 9:36 am | by Vanderbilt Univ. | News | Comments

Since the 1850s scientists have known that crystalline materials are organized into fourteen different basic lattice structures. However, a team of researchers from Vanderbilt Univ. and Oak Ridge National Laboratory now reports that it has discovered an entirely new form of crystalline order that simultaneously exhibits both crystal and polycrystalline properties, which they describe as "interlaced crystals."

Pulling together the early solar system

November 14, 2014 8:35 am | by Jennifer Chu, MIT News Office | News | Comments

While astronomers have observed the protoplanetary disk evolution throughout our galaxy, the mechanism by which planetary disks evolve at such a rapid rate has eluded scientists for decades. Now researchers have provided the first experimental evidence that our solar system’s protoplanetary disk was shaped by an intense magnetic field that drove a massive amount of gas into the sun within just a few million years.

Test developed for rapid diagnosis of bloodstream infection

November 14, 2014 8:20 am | by Univ. of California, Irvine | News | Comments

A new bloodstream infection test created by Univ. of California, Irvine researchers can speed up diagnosis times with unprecedented accuracy, allowing physicians to treat patients with potentially deadly ailments more promptly and effectively. The technology, called Integrated Comprehensive Droplet Digital Detection, or IC 3D, can detect bacteria in milliliters of blood with single-cell sensitivity in 90 mins; no cell culture is needed.

Porous molecules bind greenhouse gases

November 14, 2014 7:54 am | by Lisa Merkl, Univ. of Houston | News | Comments

A team of Univ. of Houston chemistry researchers have developed a molecule that assembles spontaneously into a lightweight structure with microscopic pores capable of binding large quantities of several potent greenhouse gases. While carbon dioxide presents the biggest problem, several other compounds are hundreds or thousands of times more potent in their greenhouse effect per unit of mass.

Topological insulators promising for spintronics, quantum computers

November 14, 2014 7:48 am | by Emil Venere, Purdue Univ. | News | Comments

Researches have uncovered "smoking-gun" evidence to confirm the workings of an emerging class of materials that could make possible "spintronic" devices and practical quantum computers far more powerful than today's technologies. The materials are called topological insulators.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading