Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Advanced Light Source sets microscopy record

September 11, 2014 8:11 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A record-setting x-ray microscopy experiment may have ushered in a new era for nanoscale imaging. Working at Lawrence Berkeley National Laboratory (Berkeley Lab), a collaboration of researchers used low energy or “soft” x-rays to image structures only 5 nm in size. This resolution, obtained at Berkeley Lab’s Advanced Light Source, is the highest ever achieved with x-ray microscopy.

Seismic gap may be filled by an earthquake near Istanbul

September 11, 2014 7:56 am | by Jennifer Chu, MIT News Office | News | Comments

When a segment of a major fault line goes quiet, it can mean one of two things: The “seismic gap” may simply be inactive, or the segment may be a source of potential earthquakes, quietly building tension over decades until an inevitable seismic release. Researchers from Massachusetts Institute of Technology and Turkey have found evidence for both types of behavior on different segments of the North Anatolian Fault.

World’s first 3-D printed car being assembled at IMTS

September 10, 2014 6:15 pm | Videos | Comments

During the six-day IMTS manufacturing technology show in Chicago this week, the “Strati” will be the first vehicle printed in one piece using direct digital manufacturing. The process will take more than 44 hours of print time. A team including Local Motors, Cincinnati Inc. and Oak Ridge National Laboratory will then rapidly assemble it for a historic first set for Saturday.

Advertisement

Chemists discover way nose perceives common class of odors

September 10, 2014 6:10 pm | News | Comments

Biologists claim that humans can perceive and distinguish a trillion different odors, but little is known about the underlying chemical processes involved. Biochemists at The City College of New York have found an unexpected chemical strategy employed by the mammalian nose to detect chemicals known as aldehydes.

Angling chromium to let oxygen through

September 10, 2014 6:03 pm | by Mary Beckman, PNNL | News | Comments

Researchers have been trying to increase the efficiency of solid oxide fuel cells by lowering the temperatures at which they run. In a serendipitous finding at Pacific Northwest National Laboratory, researchers have created a new form of strontium-chromium oxide that performs as a semiconductor and also allows oxygen to diffuse easily, a requirement for a solid oxide fuel cell.

Nanotechnology aids in cooling electrons without external sources

September 10, 2014 1:23 pm | News | Comments

A team of researchers has discovered a way to cool electrons to -228 C without external means and at room temperature, an advancement that could enable electronic devices to function with very little energy. The process involves passing electrons through a quantum well to cool them and keep them from heating.

Novel method for portable detection of drugs

September 10, 2014 10:37 am | by American Chemical Society | News | Comments

Despite being outlawed in 2012 in the U.S., the synthetic drugs known as “bath salts”—which really aren’t meant for your daily bath—are still readily available in some retail shops, on the Internet and on the streets. To help law enforcement, scientists are developing a novel method that could be the basis for the first portable, on-site testing device for identifying the drugs.

Brain structure could predict risky behavior

September 10, 2014 10:31 am | by Karen N. Peart, Yale Univ. | News | Comments

Some people avoid risks at all costs, while others will put their wealth, health and safety at risk without a thought. Researchers at Yale School of Medicine have found that the volume of the parietal cortex in the brain could predict where people fall on the risk-taking spectrum.

Advertisement

Where to grab space debris

September 10, 2014 10:10 am | by Larry Hardesty, MIT News Office | News | Comments

Objects in space tend to spin—and spin in a way that’s totally different from the way they spin on earth. Understanding how objects are spinning, where their centers of mass are, and how their mass is distributed is crucial to any number of actual or potential space missions, from cleaning up debris in the geosynchronous orbit favored by communications satellites to landing a demolition crew on a comet.

New digital map reveals stunning hidden archaeology of Stonehenge

September 10, 2014 10:03 am | Videos | Comments

A high-tech survey reveals that there is more to Stonehenge than meets the eye, finding previously unknown monuments. Researchers have produced digital maps of what's beneath the World Heritage Site, using ground-penetrating radar, high-resolution magnetometers and other techniques to peer deep into the soil. And they have found some surprises.

Searching for new forms of superconductivity in 2-D electron liquids

September 10, 2014 8:38 am | News | Comments

A new frontier for studying 2-D matter is provided by planar collections of electrons at the surface of transition-metal-oxide (TMO) materials, in which high electron densities give rise to interactions that are stronger than in semiconductors. Scientists hope to find exotic phenomena in these highly-interactive electron environments and one of the leaders in this effort is James Williams, a new fellow at the Joint Quantum Institute.

More health symptoms reported near “fracking” natural gas extraction

September 10, 2014 8:07 am | by Jim Shelton, Yale Univ. | News | Comments

A Yale Univ.-led study has found a greater prevalence of health symptoms reported among residents living close to natural gas wells, including those drilled by hydraulic fracturing. The researchers conducted a random survey of 492 people in 180 households with ground-fed water wells in southwestern Pennsylvania, where natural gas extraction activity is significant.

Engineer aims to connect the world with ant-sized radios

September 10, 2014 7:57 am | by Tom Abate, Stanford Engineering | Videos | Comments

A Stanford Univ. engineering team has built a radio the size of an ant, a device so energy efficient that it gathers all the power it needs from the same electromagnetic waves that carry signals to its receiving antenna. Designed to compute, execute and relay commands, this tiny wireless chip costs pennies to fabricate.

Advertisement

Solid light could compute previously unsolvable problems

September 10, 2014 7:46 am | by John Sullivan, Office of Engineering Communications, Princeton Univ. | News | Comments

Researchers at Princeton Univ. have begun crystallizing light as part of an effort to answer fundamental questions about the physics of matter. The researchers are not shining light through crystal—they are transforming light into crystal. As part of an effort to develop exotic materials such as room-temperature superconductors, the researchers have locked together photons, the basic element of light, so that they become fixed in place.

Cloud computing revolution applies to evolution

September 10, 2014 7:30 am | by Mike Williams, Rice Univ. | News | Comments

A $1.1 million National Science Foundation grant to two Rice Univ. computer science groups will allow them to build cloud computing tools to help analyze evolutionary patterns. With the three-year grant, Christopher Jermaine and Luay Nakhleh, both associate professors of computer science, will develop parallel processing tools that track the evolution of genes and genomes across species.

New "dry" process creates artificial membranes on silicon

September 9, 2014 2:42 pm | News | Comments

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.

Buckyballs, diamondoids join forces in tiny electronic gadget

September 9, 2014 12:38 pm | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

Scientists have married two unconventional forms of carbon to make a molecule that conducts electricity in only one direction. This tiny electronic component, known as a rectifier, could play a key role in shrinking chip components down to the size of molecules to enable faster, more powerful devices.

First evidence for water ice clouds found outside solar system

September 9, 2014 12:22 pm | Videos | Comments

A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist on our own gas giant planets, but have not been seen outside of the planets orbiting our Sun until now.

A single evolutionary road may lead to Rome

September 9, 2014 12:03 pm | News | Comments

A well-known biologist once theorized that many roads led to Rome when it comes to two distantly related organisms evolving a similar trait. A new paper suggests that when it comes to evolving some traits, especially simple ones, there may be a shared gene, or one road, that’s the source.

Single cell smashes and rebuilds its own genome

September 9, 2014 10:59 am | by Morgan Kelly, Princeton Univ. | News | Comments

Life can be so intricate and novel that even a single cell can pack a few surprises, according to a study led by Princeton Univ. researchers. The pond-dwelling, single-celled organism Oxytricha trifallax has the remarkable ability to break its own DNA into nearly a quarter-million pieces and rapidly reassemble those pieces when it's time to mate. The organism internally stores its genome as thousands of scrambled, encrypted gene pieces.

Nanotechnology to provide cleaner diesel engines

September 9, 2014 8:32 am | by Bertel Henning Jensen, Technical Univ. of Denmark | News | Comments

When it comes to diesel engine catalysts, which are responsible for cleansing exhaust fumes, platinum has unfortunately proved to be the only viable option. This has resulted in material costs alone accounting for half of the price of a diesel catalyst. Researchers in Denmark say they have developed a new way to manufacture catalysts that may result in a 25% reduction in the use of platinum.

Textbook theory behind volcanoes may be wrong

September 9, 2014 7:57 am | by Marcus Woo, Caltech | News | Comments

In the typical textbook picture, volcanoes, such as those that are forming the Hawaiian islands, erupt when magma gushes out as narrow jets from deep inside Earth. But that picture is wrong, according to a new study from researchers at Caltech and the Univ. of Miami. New seismology data are now confirming that such narrow jets don't actually exist.

Soft robot squirms over fire, ice, and withstands crushing force

September 9, 2014 7:54 am | Videos | Comments

Engineers have created a shape-changing "soft" robot that can tread over a variety of adverse environmental conditions including snow, puddles of water, flames, and the crushing force of being run over by an automobile. The pneumatically powered, fully untethered robot was enabled by the careful selection of materials and composites, including silicone elastomer.

Co-flowing liquids can stabilize chaotic “whipping” in microfluidic jets

September 9, 2014 7:49 am | by John Toon, Georgia Institute of Technology | Videos | Comments

Industrial wet spinning processes produce fibers from polymers and other materials by using tiny needles to eject continuous jets of liquid precursors. The electrically charged liquids ejected from the needles normally exhibit a chaotic “whipping” structure as they enter a secondary liquid that surrounds the microscopic jets.

Doped graphene nanoribbons with potential

September 9, 2014 7:40 am | News | Comments

Typically a highly conductive material, graphene becomes a semiconductor when prepared as an ultra-narrow ribbon. Recent research has now developed a new method to selectively dope graphene molecules with nitrogen atoms. By seamlessly stringing together doped and undoped graphene pieces, ”heterojunctions” are formed in the nanoribbons, allowing electric current to flow in only one direction when voltage is applied.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading