Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

New "dry" process creates artificial membranes on silicon

September 9, 2014 2:42 pm | News | Comments

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.

Buckyballs, diamondoids join forces in tiny electronic gadget

September 9, 2014 12:38 pm | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

Scientists have married two unconventional forms of carbon to make a molecule that conducts electricity in only one direction. This tiny electronic component, known as a rectifier, could play a key role in shrinking chip components down to the size of molecules to enable faster, more powerful devices.

First evidence for water ice clouds found outside solar system

September 9, 2014 12:22 pm | Videos | Comments

A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist on our own gas giant planets, but have not been seen outside of the planets orbiting our Sun until now.

Advertisement

A single evolutionary road may lead to Rome

September 9, 2014 12:03 pm | News | Comments

A well-known biologist once theorized that many roads led to Rome when it comes to two distantly related organisms evolving a similar trait. A new paper suggests that when it comes to evolving some traits, especially simple ones, there may be a shared gene, or one road, that’s the source.

Single cell smashes and rebuilds its own genome

September 9, 2014 10:59 am | by Morgan Kelly, Princeton Univ. | News | Comments

Life can be so intricate and novel that even a single cell can pack a few surprises, according to a study led by Princeton Univ. researchers. The pond-dwelling, single-celled organism Oxytricha trifallax has the remarkable ability to break its own DNA into nearly a quarter-million pieces and rapidly reassemble those pieces when it's time to mate. The organism internally stores its genome as thousands of scrambled, encrypted gene pieces.

Nanotechnology to provide cleaner diesel engines

September 9, 2014 8:32 am | by Bertel Henning Jensen, Technical Univ. of Denmark | News | Comments

When it comes to diesel engine catalysts, which are responsible for cleansing exhaust fumes, platinum has unfortunately proved to be the only viable option. This has resulted in material costs alone accounting for half of the price of a diesel catalyst. Researchers in Denmark say they have developed a new way to manufacture catalysts that may result in a 25% reduction in the use of platinum.

Textbook theory behind volcanoes may be wrong

September 9, 2014 7:57 am | by Marcus Woo, Caltech | News | Comments

In the typical textbook picture, volcanoes, such as those that are forming the Hawaiian islands, erupt when magma gushes out as narrow jets from deep inside Earth. But that picture is wrong, according to a new study from researchers at Caltech and the Univ. of Miami. New seismology data are now confirming that such narrow jets don't actually exist.

Soft robot squirms over fire, ice, and withstands crushing force

September 9, 2014 7:54 am | Videos | Comments

Engineers have created a shape-changing "soft" robot that can tread over a variety of adverse environmental conditions including snow, puddles of water, flames, and the crushing force of being run over by an automobile. The pneumatically powered, fully untethered robot was enabled by the careful selection of materials and composites, including silicone elastomer.

Advertisement

Co-flowing liquids can stabilize chaotic “whipping” in microfluidic jets

September 9, 2014 7:49 am | by John Toon, Georgia Institute of Technology | Videos | Comments

Industrial wet spinning processes produce fibers from polymers and other materials by using tiny needles to eject continuous jets of liquid precursors. The electrically charged liquids ejected from the needles normally exhibit a chaotic “whipping” structure as they enter a secondary liquid that surrounds the microscopic jets.

Doped graphene nanoribbons with potential

September 9, 2014 7:40 am | News | Comments

Typically a highly conductive material, graphene becomes a semiconductor when prepared as an ultra-narrow ribbon. Recent research has now developed a new method to selectively dope graphene molecules with nitrogen atoms. By seamlessly stringing together doped and undoped graphene pieces, ”heterojunctions” are formed in the nanoribbons, allowing electric current to flow in only one direction when voltage is applied.

Fingerprinting cell metabolism points toward study of obesity, diabetes

September 9, 2014 7:38 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have shown how to use a new imaging platform to map lipid metabolism in living cells, discovering specifically where cholesterol is stored and pointing toward further studies in obesity, diabetes and longevity. The imaging approach makes it possible to not only quantify the storage of cholesterol, but also the "desaturation" and oxidation of lipids, which may reduce the ability of cells to use insulin.

Scientists apply biomedical technique to reveal changes in body of the ocean

September 9, 2014 7:33 am | News | Comments

For decades, doctors have developed methods to diagnose how different types of cells and systems in the body are functioning. Now scientists have adapted an emerging biomedical technique to study the vast body of the ocean. In recent work they have demonstrated that they can identify and measure proteins in the ocean, revealing how single-celled marine organisms and ocean ecosystems operate.

Scientist explores birth of a planet

September 8, 2014 1:53 pm | News | Comments

Dr. John Carr, a scientist at the U.S. Naval Research Laboratory, is part of an international team that has found what they believe is evidence of a planet forming around a star about 335 light years from Earth. They made the chance discovery while studying the protoplanetary disk of gas around a distant forming star using a technique called spectro-astrometry, which allows astronomers to detect small changes in the position of moving gas.

Advertisement

Parting water: “Electric prism” separates water’s nuclear spin states

September 8, 2014 1:43 pm | News | Comments

Using an "electric prism", or deflector, scientists have found a new way of separating water molecules that differ only in their nuclear spin states and, under normal conditions, do not part ways. Since water is such a fundamental molecule in the universe, the recent study may impact a multitude of research areas ranging from biology to astrophysics.

Physicists explore biomimetic clocks

September 8, 2014 1:37 pm | News | Comments

An international team has engineered and studied “active vesicles." These purely synthetic, molecularly thin sacs are capable of transforming energy, injected at the microscopic level, into organized, self-sustained motion.The ability to create spontaneous motion and stable oscillations is a hallmark of living systems and reproducing and understanding this behavior remains a significant challenge for researchers.

Breath temperature test could identify lung cancer

September 8, 2014 8:43 am | News | Comments

New research in Europe suggests that testing the temperature of breath could be a simple and noninvasive method to either confirm or reject the presence of lung cancer. Many research teams have been looking at the possibility of using breath tests for a number of cancers but this is the first study looking at breath temperature as a marker in lung cancer.

Seeing clearly through a liquid

September 8, 2014 8:33 am | News | Comments

Accurately examining materials in liquids using electron microscopy is a difficult task for scientists, as electron beams perturb the sample and induce artifacts. Scientists at Pacific Northwest National Laboratory and the Univ. of California, Davis have demonstrated that in in situ liquid experiments, the choice of electron beam energy has a strong effect that goes far beyond merely increasing the concentration of reducing radicals.

Platelet-like particles augment natural blood clotting for treating trauma

September 8, 2014 8:23 am | by John Toon, Georgia Institute of Technology | News | Comments

A new class of synthetic platelet-like particles could augment natural blood clotting for the emergency treatment of traumatic injuries. The clotting particles, which are based on soft and deformable hydrogel materials, are triggered by the same factor that initiates the body’s own clotting processes.

Ultra-thin detector captures unprecedented range of light

September 8, 2014 8:13 am | by Heather Dewar, Media Relations, Univ. of Maryland | News | Comments

New research at the Univ. of Maryland could lead to a generation of light detectors that can see below the surface of bodies, walls and other objects. Using the special properties of graphene, a prototype detector is able to see an extraordinarily broad band of wavelengths. Included in this range are terahertz waves, which are invisible to the human eye.

Engineers advance understanding of graphene’s friction properties

September 8, 2014 8:09 am | News | Comments

On the macroscale, adding fluorine atoms to carbon-based materials makes for water-repellant, non-stick surfaces, such as Teflon. However, on the nanoscale, adding fluorine to graphene vastly increased the friction experienced when sliding against the material. Through a combination of physical experiments and atomistic simulations, a Univ. of Pennsylvania research team has discovered the mechanism behind this surprising finding.

Shining light on brain circuits to study learning, memory

September 8, 2014 8:04 am | by Robert Sanders, UC Berkeley | News | Comments

Univ. of California, Berkeley neuroscientists plan to use light to tweak the transmission of signals in the brain to learn more about how the mouse brain and presumably the human brain process information. Last month, the promising optogenetics research project was awarded one of 36 new $300,000, two-year grants from the National Science Foundation in support of the BRAIN Initiative.

Phosphorus a promising semiconductor

September 8, 2014 8:02 am | by Mike Williams, Rice Univ. | News | Comments

Defects damage the ideal properties of many 2-D materials, like carbon-based graphene. Phosphorus just shrugs. That makes it a promising candidate for nanoelectronic applications that require stable properties, according to new research by Rice Univ. theoretical physicist Boris Yakobson and his colleagues.

Sun-powered desalination for villages in India

September 8, 2014 7:51 am | by David L. Chandler, MIT News Office | News | Comments

Around the world, there’s more salty groundwater than fresh, drinkable groundwater. For example, 60% of India is underlain by salty water. Now an analysis by Massachusetts Institute of Technology researchers shows that a different desalination technology called electrodialysis, powered by solar panels, could provide enough clean, palatable drinking water to supply the needs of a typical village.

SAP Conference for Enterprise Portfolio & Project Management

September 5, 2014 2:26 pm | Events

Join T.A. Cook and SAP, at the annual SAP Conference for Enterprise Portfolio and Project Management (PPM), taking place in Coral Gables on November 11-13, 2014. At this event you will hear the very latest news, innovation, and best practices for enterprise portfolio and project management that will empower businesses to make better informed decisions.

First graphene-based flexible display produced

September 5, 2014 12:03 pm | Videos | Comments

A flexible display incorporating graphene in its pixels’ electronics has been successfully demonstrated by the Cambridge Graphene Centre and Plastic Logic. The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. This advance marks the first time graphene has been used in a transistor-based flexible device.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading