Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Erupting electrodes

April 10, 2015 8:49 am | by Mary Beckman, PNNL | Videos | Comments

An eruption of lithium at the tip of a battery's electrode, cracks in the electrode's body and a coat forming on the electrode's surface reveal how recharging a battery many times leads to its demise. Using a powerful microscope to watch multiple cycles of charging and discharging under real battery conditions, researchers have gained insight into the chemistry that clogs rechargeable lithium batteries.

Flip-flopping black holes spin to the end of the dance

April 10, 2015 8:01 am | by Susan Gawlowicz, Rochester Institute of Technology | News | Comments

When black holes tango, one massive partner spins head over heels (or in this case heels over head) until the merger is complete, according to researchers at Rochester Institute of Technology. This spin dynamic may affect the growth of black holes surrounded by accretion disks and alter galactic and supermassive binary black holes, leading to observational effects.

Chemists create nanoparticles that reflect nature’s patterns

April 10, 2015 7:55 am | by Jocelyn Duffy, Carnegie Mellon Univ. | News | Comments

Our world is full of patterns, from the twist of a DNA molecule to the spiral of the Milky Way. New research from Carnegie Mellon Univ. chemists has revealed that tiny, synthetic gold nanoparticles exhibit some of nature's most intricate patterns. Unveiling the kaleidoscope of these patterns was a Herculean task, and it marks the first time that a nanoparticle of this size has been crystallized and its structure mapped out atom by atom.

Advertisement

Study finds small solar eruptions can have profound effects on unprotected planets

April 10, 2015 7:48 am | by Susan Hendrix, NASA Goddard Space Flight Center | News | Comments

While no one yet knows what's needed to build a habitable planet, it's clear that the interplay between the sun and Earth is crucial for making our planet livable: a balance between a sun that provides energy and a planet that can protect itself from the harshest solar emissions. Our sun steadily emits light, energy and a constant flow of particles called the solar wind that bathes the planets as it travels out into space.

Graphene looks promising for future spintronic devices

April 10, 2015 7:39 am | by Chalmers Univ. of Technology | News | Comments

Researchers at Chalmers Univ. of Technology have discovered that large area graphene is able to preserve electron spin over an extended period, and communicate it over greater distances than had previously been known. This has opened the door for the development of spintronics, with an aim to manufacturing faster and more energy-efficient memory and processors in computers.

Research could usher in next generation of batteries, fuel cells

April 10, 2015 7:30 am | by Jeff Stensland, Univ. of South Carolina | News | Comments

Scientists have made a discovery that could dramatically improve the efficiency of batteries and fuel cells. The research involves improving the transport of oxygen ions, a key component in converting chemical reactions into electricity. The team studied a well-known material, gadolinium doped ceria, which transports oxygen ions and is currently in use as a solid-oxide fuel cell electrolyte.

Researchers deliver large particles into cells at high speed

April 9, 2015 12:06 pm | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

A new device developed by Univ. of California, Los Angeles, engineers and doctors may eventually help scientists study the development of disease, enable them to capture improved images of the inside of cells and lead to other improvements in medical and biological research.

Detecting lysosomal pH with fluorescent probes

April 9, 2015 11:51 am | by Allison Mills, Michigan Technological Univ. | News | Comments

Lysosomes are the garbage disposals of animal cells. As the resources are limited in cells, organic materials are broken down and recycled a lot; and that’s what lysosomes do. Detecting problems with lysosomes is the focus of a new set of fluorescent probes developed by researchers at Michigan Technological Univ.

Advertisement

Ordinary clay can save the day

April 9, 2015 11:12 am | by Norwegian Univ. of Science and Technology | News | Comments

Carbon capture will play a central role in helping the nations of the world manage and reduce their greenhouse gas emissions. Many materials are being tested for the purpose of capturing carbon dioxide. But now researchers led by the Norwegian Univ. of Science and Technology have found that ordinary clay can work just as effectively as more advanced materials.

Science Connect: The Evolving Lab Environment

April 9, 2015 11:01 am | by Lindsay Hock, Editor | Videos | Comments

Science is evolving: It’s becoming more translational and multidisciplinary in nature. Just as science evolves, so do lab environments. Most lab environments are now designed to be more open and not just meant for one discipline—today, biologists may work next to chemists, or chemists work alongside physicists, and so on.

VEST helps deaf feel, understand speech

April 9, 2015 9:59 am | by Mike Williams, Rice Univ. | Videos | Comments

A vest that allows the profoundly deaf to “feel” and understand speech is under development by engineering students and their mentors at Rice Univ. and Baylor College of Medicine. Under the direction of neuroscientist David Eagleman, Rice students are refining a vest with dozens of embedded actuators that vibrate in specific patterns to represent words. The vest responds to input from a phone app that isolates speech from ambient sound.

A new view of the moon’s formation

April 9, 2015 8:25 am | by Matthew Wright, Univ. of Maryland | News | Comments

Within the first 150 million years after our solar system formed, a giant body roughly the size of Mars struck and merged with Earth, blasting a huge cloud of rock and debris into space. This cloud would eventually coalesce and form the moon. For almost 30 years, planetary scientists have been quite happy with this explanation, with one major exception.

Mixing up a batch of stronger metals

April 9, 2015 8:09 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

Just as a delicate balance of ingredients determines the tastiness of a cookie or cake, the specific ratio of metals in an alloy determines desirable qualities of the new metal, such as improved strength or lightness. A new class of alloys, called high entropy alloys, is unique in that these alloys contain five or more elements mixed evenly in near equal concentrations and have shown exceptional engineering properties.

Advertisement

For ultra-cold neutrino experiment, a successful demonstration

April 9, 2015 8:01 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

An international team of nuclear physicists announced the first scientific results from the Cryogenic Underground Observatory for Rare Events (CUORE) experiment. CUORE is designed to confirm the existence of the Majorana neutrino, which scientists believe could hold the key to why there is an abundance of matter over antimatter. Or put another way: why we exist in this universe.

Self-assembling, bioinstructive collagen materials for research, medical applications

April 9, 2015 7:50 am | by Emil Venere, Purdue Univ. | News | Comments

A Purdue Univ. researcher and entrepreneur is commercializing her laboratory's innovative collagen formulations that self-assemble or polymerize to form fibrils that resemble those found in the body's tissues. These collagen building blocks can be used to create customized 3-D tissue and organs outside the body to support basic biological research, drug discovery and chemical toxicity testing.

Unraveling the origin of the pseudogap in a charge density wave compound

April 8, 2015 2:53 pm | by Argonne National Laboratory | News | Comments

The pseudogap, a state characterized by a partial gap and loss of coherence in the electronic excitations, has been associated with many unusual physical phenomena in a variety of materials ranging from cold atoms to colossal magnetoresistant manganese oxides to high temperature copper oxide superconductors. Its nature, however, remains controversial due to the complexity of these materials and the difficulties in studying them.

Emotionally inspired engineering: Emma Nelson tackles environmental issues with engineering

April 8, 2015 2:42 pm | by Julia Sklar, MIT | News | Comments

When MIT senior Emma Nelson was teaching engineering classes in China in 2013, a male student remarked of her as an instructor, “I thought we were supposed to meet engineers, not women.” As she stared out at the 100 college students before her, Nelson noticed there was just one female face looking back at her.

Glass fiber that brings light to standstill

April 8, 2015 2:33 pm | by Vienna University of Technology | News | Comments

Light is an extremely useful tool for quantum communication, but it has one major disadvantage: it usually travels at the speed of light and cannot be kept in place. A team of scientists at the Vienna Univ. of Technology has now demonstrated that this problem can be solved—not only in strange, unusual quantum systems, but in the glass fiber networks we are already using today.

Complex organic molecules discovered in infant star system: hints that prebiotic chemistry is universal

April 8, 2015 2:21 pm | by National Radio Astronomy Observatory | News | Comments

For the first time, astronomers have detected the presence of complex organic molecules, the building blocks of life, in a protoplanetary disk surrounding a young star, suggesting once again that the conditions that spawned our Earth and Sun are not unique in the universe.

SESAME passes an important milestone at CERN

April 8, 2015 1:57 pm | by CERN | News | Comments

The SESAME project has reached an important milestone: the first complete cell of this accelerator for the Middle East has been assembled and successfully tested at CERN. SESAME is a synchrotron light source under construction in Jordan.

How unwanted CDs and DVDs could help cut carbon emissions

April 8, 2015 1:45 pm | by ACS | News | Comments

Now that most consumers download and stream their movies and music, more and more CDs and DVDs will end up in landfills or be recycled. But soon these discarded discs could take on a different role: curbing the release of greenhouse gases. In ACS Sustainable Chemistry & Engineering, scientists report a way to turn the discs into a material that can capture carbon dioxide, a key greenhouse gas, and other compounds

A potential Rosetta Stone of high-temperature superconductivity

April 8, 2015 1:36 pm | by U.S. Department of Energy | News | Comments

High purity single crystals of superconducting material (CeCoIn5) with the highest observed superconducting temperature for a cerium-based material enabled investigation of the relationship among magnetism, superconductivity and disorder by strategic substitution of certain atoms with others (dopants) in the superconductor.

Can you make your own Game of Thrones sword using chemistry?

April 8, 2015 8:41 am | by American Chemical Society | Videos | Comments

The fantasy epic Game of Thrones is back April 12, 2015, and it is sure to be chock full of intrigue, indiscretions and, of course, swords. The most sought-after blades in Westeros are made from Valyrian steel, forged using ancient magic. But could you make your own Valyrian steel sword using real-life chemistry?

Carbon nanotube composites show promise for use in “unconventional” computing

April 8, 2015 8:17 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

As we approach the miniaturization limits of conventional electronics, alternatives to silicon-based transistors are being hotly pursued. Inspired by the way living organisms have evolved in nature to perform complex tasks with remarkable ease, a group of researchers from Durham Univ. and the Univ. of São Paulo-USP are exploring similar "evolutionary" methods to create information processing devices.

Optical method for producing high-res, 3-D images of nanoscale objects

April 8, 2015 8:07 am | by Bjorn Carey, Stanford Univ. | Videos | Comments

To design the next generation of optical devices, ranging from efficient solar panels to LEDs to optical transistors, engineers will need a 3-D image depicting how light interacts with these objects on the nanoscale. Unfortunately, the physics of light has thrown up a roadblock in traditional imaging techniques: The smaller the object, the lower the image's resolution in 3-D.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading