Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Test developed for rapid diagnosis of bloodstream infection

November 14, 2014 8:20 am | by Univ. of California, Irvine | News | Comments

A new bloodstream infection test created by Univ. of California, Irvine researchers can speed up diagnosis times with unprecedented accuracy, allowing physicians to treat patients with potentially deadly ailments more promptly and effectively. The technology, called Integrated Comprehensive Droplet Digital Detection, or IC 3D, can detect bacteria in milliliters of blood with single-cell sensitivity in 90 mins; no cell culture is needed.

Porous molecules bind greenhouse gases

November 14, 2014 7:54 am | by Lisa Merkl, Univ. of Houston | News | Comments

A team of Univ. of Houston chemistry researchers have developed a molecule that assembles spontaneously into a lightweight structure with microscopic pores capable of binding large quantities of several potent greenhouse gases. While carbon dioxide presents the biggest problem, several other compounds are hundreds or thousands of times more potent in their greenhouse effect per unit of mass.

Topological insulators promising for spintronics, quantum computers

November 14, 2014 7:48 am | by Emil Venere, Purdue Univ. | News | Comments

Researches have uncovered "smoking-gun" evidence to confirm the workings of an emerging class of materials that could make possible "spintronic" devices and practical quantum computers far more powerful than today's technologies. The materials are called topological insulators.

Advertisement

Tiny needles offer potential new treatment for two major eye diseases

November 13, 2014 4:43 pm | by John Toon, Georgia Institute of Technology | News | Comments

Needles almost too small to be seen with the unaided eye could be the basis for new treatment options for two of the world’s leading eye diseases: glaucoma and corneal neovascularization. The microneedles, ranging in length from 400 to 700 microns, could provide a new way to deliver drugs to specific areas within the eye relevant to these diseases.

Subducting oceanic plates are thinning adjacent continents

November 13, 2014 4:28 pm | by Mike Williams, Rice Univ. | News | Comments

The continental margins of plates on either side of the Atlantic Ocean are thinner than expected, and an international team led by a Rice Univ. scientist is using an array of advanced tools to understand why. The viscous bottom layers of the continental shelves beneath the Gibraltar arc and northeastern South America are literally being pulled off by adjacent subducting oceanic plates.

Bacteria become genomic tape recorders

November 13, 2014 4:21 pm | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology (MIT) engineers have transformed the genome of the bacterium E. coli into a long-term storage device for memory. They envision that this stable, erasable and easy-to-retrieve memory will be well suited for applications such as sensors for environmental and medical monitoring.

Bio-inspired bleeding control

November 13, 2014 4:12 pm | by Sonia Fernandez, Univ. of California, Santa Barbara | News | Comments

Stanching the free flow of blood from an injury remains a holy grail of clinical medicine. Controlling blood flow is a primary concern and first line of defense for patients and medical staff in many situations, from traumatic injury to illness to surgery. If control is not established within the first few minutes of a hemorrhage, further treatment and healing are impossible.

2015 R&D 100 Awards entries now open

November 13, 2014 11:27 am | by Lindsay Hock, Managing Editor | News | Comments

The editors of R&D Magazine have announced the opening of the 2015 R&D 100 Awards entry process. The R&D 100 Awards have a 50 plus year history of awarding the 100 most technologically significant products of the year. Past winners have included sophisticated testing equipment, innovative new materials, chemistry breakthroughs, biomedical products, consumer items, high-energy physics and more.

Advertisement

New process isolates promising material

November 13, 2014 11:11 am | by Amanda Morris, Northwestern Univ. | News | Comments

After graphene was first produced in the laboratory in 2004, thousands of laboratories began developing graphene products worldwide. Researchers were amazed by its lightweight and ultra-strong properties. Ten years later, scientists now search for other materials that have the same level of potential.

Moving cameras talk to each other to identify, track pedestrians

November 13, 2014 10:11 am | by Michelle Ma, Univ. of Washington | Videos | Comments

It’s not uncommon to see cameras mounted on store ceilings, propped up in public places or placed inside subways, buses and even on the dashboards of cars. Cameras record our world down to the second. This can be a powerful surveillance tool on the roads and in buildings, but it’s surprisingly hard to sift through vast amounts of visual data to find pertinent information, until now.

Multilaboratory collaboration brings new x-ray detector to light

November 13, 2014 9:30 am | by Troy Rummler, Fermilab | News | Comments

A collaboration blending research in U.S. Dept. of Energy's offices of High-Energy Physics (HEP) with Basic Energy Sciences (BES) will yield a one-of-a-kind x-ray detector. The device boasts Brookhaven National Laboratory sensors mounted on Fermilab integrated circuits linked to Argonne National Laboratory data acquisition systems. It will be used at Brookhaven's National Synchrotron Light Source II and Argonne's Advanced Photon Source.

New way to move atomically thin semiconductors for use in flexible devices

November 13, 2014 8:51 am | by Matt Shipman, News Services, North Carolina State Univ. | Videos | Comments

Researchers from North Carolina State Univ. have developed a new way to transfer thin semiconductor films, which are only one atom thick, onto arbitrary substrates, paving the way for flexible computing or photonic devices. The technique is much faster than existing methods and can perfectly transfer the atomic scale thin films from one substrate to others, without causing any cracks.

Chemists build a molecular banister

November 13, 2014 8:17 am | by Univ. of Basel | News | Comments

Chemists at the Univ. of Basel have succeeded in twisting a molecule by combining molecular strands of differing lengths. The longer strand winds around a central axis like a staircase banister, creating a helical structure that exhibits special physical properties. The chemistry of all substances is to a large extent defined by their spatial arrangement.

Advertisement

Regulatory, scientific complexity of generic nanodrugs could delay savings for patients

November 13, 2014 8:07 am | by American Chemical Society | News | Comments

Nanomedicine is offering patients a growing arsenal of therapeutic drugs for a variety of diseases, but often at a cost of thousands of dollars a month. Generics could substantially reduce the price tag for patients—if only there were a well-defined way to make and regulate them. An article in Chemical & Engineering News (C&EN) details the challenges on the road to generic nanodrugs.

Supercomputers enable climate science to enter a new golden age

November 13, 2014 7:59 am | by Julie Chao, Lawrence Berkeley National Laboratory | Videos | Comments

Not long ago, it would have taken several years to run a high-resolution simulation on a global climate model. But using some of the most powerful supercomputers now available, Lawrence Berkeley National Laboratory climate scientist Michael Wehner was able to complete a run in just three months. Not only were the simulations much closer to actual observations, but the high-resolution models were far better at reproducing intense storms.

Study explains atomic action in high-temperature superconductors

November 13, 2014 7:43 am | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

A study at the SLAC National Accelerator Laboratory suggests for the first time how scientists might deliberately engineer superconductors that work at higher temperatures. In their report, a team of researchers explains why a thin layer of iron selenide superconducts at much higher temperatures when placed atop another material, which is called STO for its main ingredients strontium, titanium and oxygen. 

Common fracking chemicals no more toxic than household substances

November 12, 2014 4:15 pm | by Laura Snider, CU-Boulder Media Relations | News | Comments

The “surfactant” chemicals found in samples of fracking fluid collected in five states were no more toxic than substances commonly found in homes, according to a first-of-its-kind analysis by researchers at the Univ. of Colorado Boulder. Fracking fluid is largely comprised of water and sand, but oil and gas companies also add a variety of other chemicals, including surfactants.

Primordial galaxy bursts with starry births

November 12, 2014 4:09 pm | by Vasyl Kacapyr, Cornell Univ. | News | Comments

Peering deep into time with one of the world’s newest, most sophisticated telescopes, astronomers have found a galaxy—AzTEC-3—that gives birth annually to 500 times the number of suns as the Milky Way galaxy, according to a new Cornell Univ.-led study published in the Astrophysical Journal.

A piece of the quantum puzzle

November 12, 2014 3:59 pm | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

While the Martinis Lab at the Univ. of California, Santa Barbara has been focusing on quantum computation, they have also been exploring qubits for quantum simulation on a smaller scale. The team worked on a new qubit architecture, which is an essential ingredient for quantum simulation, and allowed them to master the seven parameters necessary for complete control of a two-qubit system.

Report: China headed to overtake EU, U.S. in science and technology spending

November 12, 2014 11:59 am | by Catherine Bremer, OECD | News | Comments

Squeezed R&D budgets in the EU, Japan and U.S. are reducing the weight of advanced economies in science and technology research, patent applications and scientific publications and leaving China on track to be the world’s top R&D spender by around 2019, according to a OECD report.

Lighter, cheaper radio wave device could transform telecommunications

November 12, 2014 11:18 am | by Sandra Zaragoza, The Univ. of Texas at Austin | News | Comments

Researchers at The Univ. of Texas at Austin have achieved a milestone in modern wireless and cellular telecommunications, creating a radically smaller, more efficient radio wave circulator that could be used in cellphones and other wireless devices, as reported in Nature Physics. The new circulator has the potential to double the useful bandwidth in wireless communications by enabling full-duplex functionality.

Evolution software looks beyond the branches

November 12, 2014 10:47 am | by Mike Williams, Rice Univ. | News | Comments

The tree has been an effective model of evolution for 150 years, but a Rice Univ. computer scientist believes it’s far too simple to illustrate the breadth of current knowledge. Rice researcher Luay Nakhleh and his group have developed PhyloNet, an open source software package that accounts for horizontal as well as vertical inheritance of genetic material among genomes.

Electronic “tongue” to ensure food quality

November 12, 2014 10:35 am | by American Chemical Society | News | Comments

An electronic “tongue” could one day sample food and drinks as a quality check before they hit store shelves. Or it could someday monitor water for pollutants or test blood for signs of disease. With an eye toward these applications, scientists are reporting the development of a new, inexpensive and highly sensitive version of such a device in ACS Applied Materials & Interfaces.

Some plants regenerate by duplicating their DNA

November 12, 2014 10:29 am | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

When munched by grazing animals (or mauled by scientists in the laboratory), some herbaceous plants overcompensate, producing more plant matter and becoming more fertile than they otherwise would. Scientists say they now know how these plants accomplish this feat of regeneration. They report their findings in Molecular Ecology.

Cancer-killing nanodaisies

November 12, 2014 8:31 am | by Alastair Hadden, North Carolina State Univ. | Videos | Comments

North Carolina State Univ. researchers have developed a potential new weapon in the fight against cancer: a daisy-shaped drug carrier that’s many thousands of times smaller than the period at the end of this sentence. Once injected into the bloodstream, millions of these “nanodaisies” sneak inside cancer cells and release a cocktail of drugs to destroy them from within.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading