Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Biochemists build largest synthetic molecular “cage” ever

November 19, 2014 10:26 am | by Stuart Wolpert, Univ. of California, Los Angeles | News | Comments

Univ. of California, Los Angeles biochemists have created the largest-ever protein that self-assembles into a molecular “cage.” The research could lead to synthetic vaccines that protect people from the flu, HIV and other diseases. At a size hundreds of times smaller than a human cell, it also could lead to new methods of delivering pharmaceuticals inside of cells, or to the creation of new nanoscale materials.

Streamlining thin-film processing saves time, energy

November 19, 2014 9:41 am | by South Dakota State University Communications Center | News | Comments

Energy storage devices and computer screens may seem worlds apart, but they're not. When Assoc. Prof. Qi Hua Fan set out to make a less expensive supercapacitor for storing renewable energy, he developed a new plasma technology that will streamline the production of display screens.

Research advances understanding of atomically thin crystal growth

November 19, 2014 9:24 am | by David Goddard, UT Knoxville | News | Comments

Univ. of Tennessee, Knoxville’s College of Engineering has made recent headlines for discoveries that, while atomically small, could impact our modern world. The team focused on the role of epilayer-substrate interactions in determining orientational relations in van der Waals epitaxy.

Advertisement

X-ray laser brings key cell structures into focus

November 19, 2014 9:07 am | by SLAC Office of Communications | News | Comments

Scientists have made high-resolution x-ray laser images of an intact cellular structure much faster and more efficiently than ever possible before. The results are an important step toward atomic-scale imaging of intact biological particles, including viruses and bacteria. The technique was demonstrated at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory.

Computer model sets new precedent in drug discovery

November 19, 2014 8:52 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | Videos | Comments

A major challenge faced by the pharmaceutical industry has been how to rationally design and select protein molecules to create effective biologic drug therapies while reducing unintended side effects—a challenge that has largely been addressed through costly guess–and–check experiments. Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. offer a new approach.

Study: Light may skew lab tests on nanoparticles’ health effects

November 19, 2014 8:38 am | by Chad Boutin, NIST | News | Comments

Truth shines a light into dark places. But sometimes to find that truth in the first place, it’s better to stay in the dark. That’s what recent findings at NIST show about methods for testing the safety of nanoparticles. It turns out that previous tests indicating that some nanoparticles can damage our DNA may have been skewed by inadvertent light exposure in the lab.

Black hole loses its appetite for gassy cloud

November 19, 2014 8:22 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

In a showdown of black hole versus G2—a cloud of gas and dust—it looks like G2 won. Recent research shows that G2 came within 30 billion km of the super-massive black hole at the center of our galaxy, yet managed to escape from the gravitational pull of the black hole.

Hormone points to potential treatment for metabolic disorders

November 19, 2014 8:13 am | by Laura Williams, Univ. of Michigan | News | Comments

Researchers at the Univ. of Michigan have discovered how a previously unknown hormone serves as a messenger from fat cells to the liver and are investigating the potential of developing a new treatment for metabolic disorders. Jiandie Lin of the Life Sciences Institute described how in mice the hormone, NRG4, is secreted by so-called brown fat cells and communicates with the liver to regulate the conversion of sugar into fat.

Advertisement

Running the color gamut

November 19, 2014 8:01 am | by Rob Matheson, MIT News Office | News | Comments

If LCD TVs get more colorful in the next few years, it will probably be thanks to QD Vision, a pioneer of quantum-dot television displays. Quantum dots are light-emitting semiconductor nanocrystals that can be tuned to emit all colors across the visible spectrum. By tuning these dots to red and green, and using a blue backlight to energize them, QD Vision has developed an optical component that can boost the color gamut for LCD televisions.

Fool’s gold as a solar material?

November 19, 2014 7:47 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

As the installation of photovoltaic solar cells continues to accelerate, scientists are looking for inexpensive materials beyond the traditional silicon that can efficiently convert sunlight into electricity. Theoretically, iron pyrite could do the job, but when it works at all, the conversion efficiency remains frustratingly low. Now, a Univ. of Wisconsin-Madison research team explains why that is.

Paramecia need Newton for navigation

November 19, 2014 7:36 am | by Kevin Stacey, Brown Univ. | Videos | Comments

For such humble creatures, single-celled paramecia have remarkable sensory systems. Give them a sharp jab on the nose, they back up and swim away. Jab them in the behind, they speed up their swimming to escape. But according to new research, when paramecia encounter flat surfaces, they’re at the mercy of the laws of physics.

Study will test survivors' blood to treat Ebola

November 18, 2014 11:00 pm | by Marilynn Marchione - AP Chief Medical Writer - Associated Press | News | Comments

A coalition of companies and aid groups announced plans Tuesday to test experimental drugs and collect blood plasma from Ebola survivors to treat new victims of the disease in West Africa. Plasma from survivors contains antibodies, substances the immune system makes to fight the virus.

Warmth, flowing water on early Mars were episodic

November 18, 2014 11:46 am | by Kevin Stacey, Brown Univ. | News | Comments

Ample evidence of ancient rivers, streams and lakes make it clear that Mars was at some point warm enough for liquid water to flow on its surface. While that may conjure up images of a tropical Martian paradise, new research published in Nature Geoscience throws a bit of cold water on that notion.

Advertisement

Gravity may have saved the universe after the Big Bang

November 18, 2014 10:34 am | by Laura Gallagher, Imperial College London | News | Comments

New research by a team of European physicists could explain why the universe did not collapse immediately after the Big Bang. Studies of the Higgs particle have suggested that the production of Higgs particles during the accelerating expansion of the very early universe (inflation) should have led to instability and collapse.

A new portrait of carbon dioxide

November 18, 2014 9:36 am | by Patrick Lynch, NASA's Goddard Space Flight Center | Videos | Comments

An ultra-high-resolution NASA computer model has given scientists a stunning new look at how carbon dioxide in the atmosphere travels around the globe. Plumes of carbon dioxide in the simulation swirl and shift as winds disperse the greenhouse gas away from its sources. The simulation also illustrates differences in carbon dioxide levels in the northern and southern hemispheres.

Scientists reveal weak spots in Ebola’s defenses

November 18, 2014 9:27 am | by The Scripps Research Institute | News | Comments

Scientists at The Scripps Research Institute have identified weak spots on the surface of Ebola virus that are targeted by the antibodies in ZMapp, the experimental drug cocktail administered to several patients during the recent Ebola outbreak. The study provides a revealing 3-D picture of how the ZMapp antibodies bind to Ebola virus.

New acoustic sensor developed for chemical, biological detection

November 18, 2014 9:14 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Testing for ovarian cancer or the presence of a particular chemical could be almost as simple as distinguishing an F sharp from a B flat, thanks to a new microscopic acoustic device that has been dramatically improved by scientists at Argonne National Laboratory. The device, known as a surface acoustic wave (SAW) sensor, detects frequency changes in waves that propagate through its crystalline structure.

As temperatures rise, soil will relinquish less carbon to atmosphere

November 18, 2014 8:26 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Here’s another reason to pay close attention to microbes: Current climate models probably overestimate the amount of carbon that will be released from soil into the atmosphere as global temperatures rise, according to research from Lawrence Berkeley National Laboratory. The findings are from a new computer model that explores the feedbacks between soil carbon and climate change.

Two sensors in one

November 18, 2014 8:10 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemists have developed new nanoparticles that can simultaneously perform magnetic resonance imaging (MRI) and fluorescent imaging in living animals. Such particles could help scientists to track specific molecules produced in the body, monitor a tumor’s environment, or determine whether drugs have successfully reached their targets.

Chemical disguise transforms RNAi drug delivery

November 18, 2014 7:57 am | by Heather Buschman, Univ. of California, San Diego | News | Comments

Small pieces of synthetic RNA trigger a RNA interference (RNAi) response that holds great therapeutic potential to treat a number of diseases, especially cancer and pandemic viruses. The problem is delivery: It’s extremely difficult to get RNAi drugs inside the cells in which they are needed.

Researchers create, control spin waves

November 18, 2014 7:50 am | by James Devitt, New York Univ. | News | Comments

A team of New York Univ. and Univ. of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.

Study: Polar bears disappearing from key region

November 17, 2014 5:01 pm | by Seth Borenstein - AP Science Writer - Associated Press | News | Comments

A key polar bear population fell nearly by half in the past decade, a new U.S.-Canada study found, with scientists seeing a dramatic increase in young cubs starving and dying. Researchers chiefly blame shrinking sea ice from global warming. Scientists from the U.S. Geological Survey and Environment Canada captured, tagged and released polar bears in the southern Beaufort Sea from 2001 to 2010.

Advance in cryopreservation could change management of world blood supplies

November 17, 2014 3:58 pm | by David Stauth, Oregon State Univ. | News | Comments

Engineers at Oregon State Univ. have identified a method to rapidly prepare frozen red blood cells for transfusions, which may offer an important new way to manage the world’s blood supply. It’s already possible to cryopreserve human red blood cells in the presence of 40% glycerol, but is rarely done because of the time-consuming process to thaw and remove the glycerol from the blood.

Mixing light at the nanoscale

November 17, 2014 3:46 pm | by Evan Lerner, Univ. of Pennsylvania | News | Comments

The race to make computer components smaller and faster and use less power is pushing the limits of the properties of electrons in a material. Photonic systems could eventually replace electronic ones, but the fundamentals of computation, mixing two inputs into a single output, currently require too much space and power when done with light.

Graphene/nanotube hybrid benefits flexible solar cells

November 17, 2014 3:37 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have invented a novel cathode that may make cheap, flexible dye-sensitized solar cells practical. The Rice laboratory of materials scientist Jun Lou created the new cathode, one of the two electrodes in batteries, from nanotubes that are seamlessly bonded to graphene and replaces the expensive and brittle platinum-based materials often used in earlier versions.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading