Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Scientists synthesize a two-element atomic chain inside a carbon nanotube

October 16, 2014 10:05 am | News | Comments

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology have synthesized an atomic chain in which two elements, cesium and iodine, are aligned alternately inside a carbon nanotube. Analyzed using electron microscopy and spectroscopy, the invention could shed light on the adsorption mechanisms of radioactive elements.

Project to detect possible damages in aircraft parts early in process

October 16, 2014 9:21 am | News | Comments

Univ. of Texas at Arlington engineering professors have received an Air Force grant to examine the material surface at the micro- and nano-scale level that will provide clues for predicting fatigue in aircraft parts. The new approach will rely on a scanning whitelight interferometric surface profiler integrated with a compact mechanical tester and an electron backscatter diffraction module to deliver in-situ 3-D surface profiling.

Research reveals unique capabilities of 3-D printing

October 16, 2014 8:51 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Researchers at Oak Ridge National Laboratory have demonstrated an additive manufacturing method to control the structure and properties of metal components with precision unmatched by conventional manufacturing processes. The researchers demonstrated the method using an ARCAM electron beam melting system (EBM), in which successive layers of a metal powder are fused together by an electron beam into a 3-D product.

Advertisement

Biological sample prep time cut dramatically

October 16, 2014 8:40 am | by Stephen P Wampler, Lawrence Livermore National Laboratory | News | Comments

When Lawrence Livermore National Laboratory researchers invented the field of biological accelerator mass spectrometry (AMS) in the late 1980s, the process of preparing the samples was time-consuming and cumbersome. Physicists and biomedical researchers used torches, vacuum lines, special chemistries and high degrees of skill to convert biological samples into graphite targets that could then be run through the AMS system.

Study reveals optimal particle size for anticancer nanomedicines

October 16, 2014 8:10 am | News | Comments

Nanomedicines consisting of nanoparticles for targeted drug delivery to specific tissues and cells offer new solutions for cancer diagnosis and therapy. Understanding the interdependency of physiochemical properties of nanomedicines, in correlation to their biological responses and functions, is crucial for their further development of as cancer-fighters.

Ultrasound reveals secrets of deadly abdominal aortic aneurysms

October 16, 2014 7:56 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers are exploring the usefulness of ultrasound imaging to study dangerous abdominal aortic aneurysms, a bulging of the aorta that is usually fatal when it ruptures and for which there is no effective medical treatment. Abdominal aortic aneurysms are the 13th leading cause of death in the U.S., killing about 15,000 annually.

Big step in battling bladder disease

October 16, 2014 7:46 am | by Rob Matheson, MIT News Office | News | Comments

The millions of people worldwide who suffer from the painful bladder disease known as interstitial cystitis (IC) may soon have a better, long-term treatment option, thanks to a controlled-release, implantable device invented by Massachusetts Institute of Technology Prof. Michael Cima and other researchers. The device is a pretzel-shaped silicone tube that could be inserted into the bladder, slowly releasing lidocaine over two weeks.

A brighter design emerges for low-cost, “greener” LED light bulbs

October 15, 2014 2:52 pm | News | Comments

The phase-out of traditional incandescent bulbs in the U.S. and elsewhere, as well as a growing interest in energy efficiency, has given LED lighting a sales boost. That trend could be short-lived as key materials known as rare earth elements become more expensive. Scientists at Rutgers Univ., however, have now designed new materials for making household LED bulbs without using these ingredients.

Advertisement

Researchers develop world’s thinnest electric generator

October 15, 2014 2:47 pm | News | Comments

Scientists report that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide. This finding has resulted in a unique electric generator and could point the way to mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

Cheap catalyst gets expensive accessory

October 15, 2014 12:06 pm | News | Comments

Iron catalysts remove oxygen inexpensively, but are susceptible to rust or oxidation in biofuel production. Precious metals that resist corrosion are even less efficient at removing oxygen. But adding just a touch of palladium to the iron produces a catalyst that quickly removes oxygen atoms, easily releases the desired products, and doesn't rust, according to scientists at Pacific Northwest National Laboratory and Washington State Univ.

Spacecraft to attempt comet landing next month

October 15, 2014 11:56 am | News | Comments

The European Space Agency has confirmed the time and place it will attempt to land the first spacecraft on a comet. The unmanned probe Rosetta will release a 100-kg (220-lb) lander on Nov. 12 in a maneuver that will take about seven hours.

Scientists create new protein-based material with some nerve

October 15, 2014 9:24 am | by Sarah Yang, UC Berkeley | News | Comments

Univ. of California, Berkeley scientists have taken proteins from nerve cells and used them to create a “smart” material that is extremely sensitive to its environment. This marriage of materials science and biology could give birth to a flexible, sensitive coating that is easy and cheap to manufacture in large quantities.

Electric vehicle technology packs more punch in smaller package

October 15, 2014 8:46 am | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

Using 3-D printing and novel semiconductors, researchers at Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful and more efficient. At the core of this development is wide bandgap material made of silicon carbide with qualities superior to standard semiconductor materials.

Advertisement

Serendipitous holography reveals hidden cracks in shocked targets

October 15, 2014 8:35 am | by Breanna Bishop, Lawrence Livermore National Laboratory | News | Comments

In a recent article published in the Review of Scientific Instruments, a research team led by scientists at Lawrence Livermore National Laboratory describe a technique for 3-D image processing of a high-speed photograph of a target, "freezing" its motion and revealing hidden secrets. This technique is particularly applicable in targets that are "shocked."

Scientists map key moment in assembly of DNA-splitting molecular machine

October 15, 2014 8:22 am | News | Comments

The proteins that drive DNA replication are some of the most complex machines on Earth and the process involves hundreds of atomic-scale moving parts that rapidly interact and transform. Now, scientists have pinpointed crucial steps in the beginning of the replication process, including surprising structural details about the enzyme that "unzips" and splits the DNA double helix so the two halves can serve as templates for DNA duplication.

Innovations being commercialized to improve radiation detection, adhesives and sealants

October 15, 2014 8:17 am | Videos | Comments

Officials at a Chicago-based startup, Sagamore-Adams Laboratories LLC, say innovations discovered in Purdue University's School of Nuclear Engineering are being commercialized to address challenges in improving radiation detection and making sealants and adhesives safer. They have developed technology that could lead to radiation sensors that cost less and provide better information than traditional sensors.

MAVEN’s first look at Mars holds surprises

October 15, 2014 8:06 am | by Jim Scott, CU-Boulder Media Relations | News | Comments

NASA’s MAVEN spacecraft has provided scientists their first look at a storm of energetic solar particles at Mars and produced unprecedented ultraviolet images of the tenuous oxygen, hydrogen and carbon coronas surrounding the Red Planet. In addition, the new observations allowed scientists to make a comprehensive map of highly variable ozone in the Martian atmosphere underlying the coronas.

Earth’s magnetic field could flip within a human lifetime

October 15, 2014 7:56 am | by Robert Sanders, Univ. of California, Berkeley Media Relations | News | Comments

It’s not as bizarre as it sounds. Earth’s magnetic field has flipped many times throughout the planet’s history. Its dipole magnetic field, like that of a bar magnet, remains about the same intensity for thousands to millions of years, but for incompletely known reasons it occasionally weakens and, presumably over a few thousand years, reverses direction.

Rock-dwelling microbes remove methane from deep sea

October 14, 2014 1:26 pm | by Ker Than, Caltech | News | Comments

Methane-breathing microbes that inhabit rocky mounds on the seafloor could be preventing large volumes of the potent greenhouse gas from entering the oceans and reaching the atmosphere, according to a new study. The rock-dwelling microbes represent a previously unrecognized biological sink for methane and as a result could reshape scientists' understanding of where this greenhouse gas is being consumed in subseafloor habitats.

Discovery of cellular snooze button advances cancer and biofuel research

October 14, 2014 12:53 pm | by Michigan State Univ. Media Communications | News | Comments

The discovery of a cellular snooze button has allowed a team of Michigan State Univ. scientists to potentially improve biofuel production and offer insight on the early stages of cancer. The discovery finds the protein CHT7 is a likely repressor of cellular quiescence, or resting state. This cellular switch, which influences algae’s growth and oil production, also wields control of cellular growth—and tumor growth—in humans.

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven

October 14, 2014 12:09 pm | by Ingrid Söderbergh, Umea Univ. | News | Comments

Swedish and Chinese researchers have recently shown how a unique nano-alloy composed of palladium nano-islands embedded in tungsten nanoparticles creates a new type of catalysts for highly efficient oxygen reduction, the most important reaction in hydrogen fuel cells. Their results are published in the scientific journal Nature Communications.

With their mark on Earth, humans may name era, too

October 14, 2014 11:57 am | by Seth Borenstein, AP Science Writer | News | Comments

Though most non-experts don't realize it, science calls the past 12,000 years the Holocene, Greek for "entirely recent." But the way humans and their industries are altering the planet, especially its climate, has caused an increasing number of scientists to use the word Anthropocene to better describe when and where we are.

Unstoppable magnetoresistance

October 14, 2014 9:20 am | by Tien Nguyen, Brookhaven National Laboratory | News | Comments

Mazhar Ali, a fifth-year graduate student in the laboratory of Bob Cava, the Russell Wellman Moore Professor of Chemistry at Princeton Univ., has spent his academic career discovering new superconductors, materials coveted for their ability to let electrons flow without resistance. While testing his latest candidate, the semimetal tungsten ditelluride (WTe2), he noticed a peculiar result.

Rediscovering Venus to find faraway Earths

October 14, 2014 9:12 am | News | Comments

Astronomers Chih-Hao Li and David Phillips of the Harvard-Smithsonian Center for Astrophysics want to rediscover Venus. They plan to “find” the second planet again using a powerful new optical device installed on the Italian National Telescope that will measure Venus' precise gravitational pull on the sun. If they succeed, their first-of-its-kind demonstration will be later used for finding Earth-like exoplanets orbiting distant stars.

Slippery when dry: Graphene proves a long-lasting lubricant

October 14, 2014 9:08 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

When trying to design a mechanical system to last as long as possible, scientists and engineers have to find ways of overcoming friction. While researchers have found many materials that help to reduce friction, conventional lubricants often have chemical limitations. A recent analysis at Argonne National Laboratory has identified the properties of a newer, wear-resistant substance that works in a broader range of environments.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading