Advertisement
General Sciences
Subscribe to General Sciences
View Sample

FREE Email Newsletter

Project yields sharpest map of Mars' surface properties

July 17, 2014 7:20 am | by Robert Burnham, ASU | News | Comments

A heat-sensing camera designed at Arizona State University has provided data to create the most detailed global map yet made of Martian surface properties. THEMIS, the nine-band visual and infrared camera on NASA’s Mars Odyssey orbiter, was used to create this map, which is now available online. And citizen scientists are invited to help make it even better.

Study: Squid skin protein could improve biomedical technologies

July 16, 2014 2:24 pm | News | Comments

The common pencil squid may hold the key to a new generation of medical technologies that could communicate more directly with the human body. Materials science researchers in California have discovered that reflectin, a protein in the tentacled creature’s skin, can conduct positive electrical charges, or protons, making it a promising material for building biologically inspired devices.  

Dispersant from Deepwater Horizon spill found to persist in the environment

July 16, 2014 12:51 pm | News | Comments

In an attempt to prevent vast quantities of oil from fouling beaches and marshes after the 2010 Deepwater Horizon spill in the Gulf of Mexico, BP applied 1.84 million gallons of chemical dispersant. The dispersant was thought to rapidly degrade in the environment, but a new study has found that the DOSS dispersant compound remains associated with oil and can persist in the environment for up to four years.

Advertisement

Bubble wrap serves as sheet of tiny test tubes in resource-limited regions

July 16, 2014 11:46 am | News | Comments

Popping the blisters on the bubble wrap might be the most enjoyable thing about moving. But now, researchers led by 2007 R&D Magazine Scientist of the Year George Whitesides propose a more productive way to reuse the popular packing material: as a sheet of small, test tube-like containers for medical and environmental samples. Analyses can take place right in the bubbles.

Researchers develop simple procedure to obtain nanosized graphene

July 16, 2014 9:34 am | Videos | Comments

A team including scientists from Spain and from IBM Research in Switzerland have published work which describes an extremely simple method to obtain high quality nanographenes from easily available organic compounds. This method is based on the reactivity of a group of molecules named arynes, which can act as "molecular glue" to paste graphene fragments together.

NASA’s Van Allen probes show how to accelerate electrons

July 16, 2014 7:50 am | News | Comments

One of the great, unanswered questions for space weather scientists is just what creates two gigantic donuts of radiation surrounding Earth, called the Van Allen radiation belts. Theories abound, but probes sent by NASA have recently provided the first really strong confirmation of what's happening. For the first time, scientists can explain how the electrons are accelerated up to nearly the speed of light.

Powerful new sensor amplifies optical signature of single molecules by 100 billion times

July 15, 2014 5:19 pm | News | Comments

Scientists in Texas have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. The new imaging method uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

Entomology research fights mosquitoes with mosquitoes

July 15, 2014 4:58 pm | Videos | Comments

Researchers in Kentucky have developed a technology that uses male mosquitoes to effectively sterilize females through a naturally occurring bacterium. Called MosquitoMate, the new technology has been issued an experimental use permit for open field releases targeting the invasive Asian tiger mosquito, which is a vector for newly introduced pathogens like the Chikungunya virus.

Advertisement

Powerful molecular sensor boosts optical signal by 100 billion times

July 15, 2014 4:45 pm | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. The new imaging method uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

New York invests in nanotech with General Electric

July 15, 2014 4:17 pm | by David Klepper - Associated Press - Associated Press | News | Comments

New York state is teaming with General Electric Co. and other companies on a $500 million initiative to spur high-tech manufacturing of miniature electronics, Gov. Andrew Cuomo and GE CEO Jeffrey Immelt announced Tuesday. The state will invest $135 million for the collaborative program, which will be based out of the SUNY College of Nanoscale Science and Engineering in Albany.

Directly visualizing hydrogen bonds

July 15, 2014 3:53 pm | News | Comments

Using a newly developed, ultrafast femtosecond infrared light source, chemists at the University of Chicago have been able to directly visualize the coordinated vibrations between hydrogen-bonded molecules. This marks the first time this sort of chemical interaction, which is found in nature everywhere at the molecular level, has been directly visualized.

Drones: Next big thing in aviation is small

July 15, 2014 2:21 pm | by Danica Kirka - Associated Press - Associated Press | News | Comments

The next big thing in aviation may be really small. With some no bigger than a hummingbird, the hottest things at this week's Farnborough International Airshow are tiny compared with the titans of the sky, such as the Airbus 380 or the Boeing Dreamliner.

Removing parts of shape-shifting protein explains how blood clots

July 15, 2014 1:54 pm | News | Comments

Prothrombin is an inactive precursor for thrombin, a key blood-clotting protein, and is essential for life because of its ability to coagulate blood. Using x-ray crystallography, researchers have published the first image of this important protein. By removing disordered sections of the protein’s structure, scientists have revealed its underlying molecular mechanism for the first time.

Advertisement

Skin gel stops breast cancer growth without dangerous side effects

July 15, 2014 1:47 pm | by Marla Paul, Northwestern Univ. | News | Comments

Tamoxifen is an oral drug that is used for breast cancer prevention and as therapy for non-invasive breast cancer and invasive cancer. Seema Khan, a professor of surgery at Northwestern Univ., has found that is tamoxifen is used in gel form, it reduces the growth of cancer cells while minimizing dangerous side effects such as blood clots and uterine cancer.

3-D nanostructure could benefit nanoelectronics, gas storage

July 15, 2014 10:57 am | by B.J. Almond, Rice Univ. | News | Comments

A 3-D porous nanostructure would have a balance of strength, toughness and ability to transfer heat that could benefit, nanoelectronics, gas storage and composite materials that perform multiple functions, according to engineers at Rice Univ. The researchers made this prediction by using computer simulations to create a series of 3-D prototypes with boron nitride, a chemical compound made of boron and nitrogen atoms.

Digital crime fighters face technical challenges with cloud computing

July 15, 2014 10:42 am | News | Comments

NIST has issued for public review and comment a draft report summarizing 65 challenges that cloud computing poses to forensics investigators who uncover, gather, examine and interpret digital evidence to help solve crimes. The report was prepared by the NIST Cloud Computing Forensic Science Working Group, an international body of cloud and digital forensic experts from industry, government and academia.

Joining the dots for quantum computing

July 15, 2014 9:31 am | News | Comments

Researchers at RIKEN in Japan, in collaboration with researchers from Purdue Univ., have recently demonstrated the scalability of quantum dot architectures by trapping and controlling four electrons in a single device. Circuits based on quantum dots are one of the most promising practical routes to harnessing the potential of quantum computing.

Study: Friends share similarities in their DNA

July 15, 2014 9:20 am | by Malcolm Ritter, AP Science Writer | News | Comments

You may be more similar to your friends than you think. A new study suggests that the DNA code tends to be more alike between friends than between strangers, and the similarity goes beyond the effect of shared ethnicity. The difference is slight but detectable and consistent, and the finding could be important for theories about human evolution.

Swiss cross made from just 20 single atoms

July 15, 2014 9:14 am | News | Comments

Together with teams from Finland and Japan, physicists from the Univ. of Basel in Switzerland were able to place 20 single bromine atoms on a fully insulated surface at room temperature to form the smallest “Swiss cross” ever created. The effort is a breakthrough because the fabrication of artificial structures on an insulator at room temperature is difficult. It is largest number of atomic manipulations ever achieved at room temperature.

Physicists detect process even rarer than the long-sought Higgs particle

July 15, 2014 8:20 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Scientists running the ATLAS experiment at the Large Hadron Collider report the first evidence of a process that can be used to test the mechanism by which the recently discovered Higgs particle imparts mass to other fundamental particles. More rare than the production of the Higgs itself, this process also provides a new stringent test of the Standard Model of particle physics.

Labs characterize carbon for batteries

July 15, 2014 8:04 am | by Mike Williams, Rice Univ. | News | Comments

Lithium-ion batteries could benefit from a theoretical model created at Rice Univ. and Lawrence Livermore National Laboratory that predicts how carbon components will perform as electrodes. The model is based on intrinsic electronic characteristics of materials used as battery anodes. These include the material’s quantum capacitance and the material’s absolute Fermi level.

Getting a charge out of water droplets

July 15, 2014 7:53 am | by David L. Chandler, MIT News Office | News | Comments

Last year, Massachusetts Institute of Technology researchers discovered that when water droplets spontaneously jump away from superhydrophobic surfaces during condensation, they can gain electric charge in the process. Now, the same team has demonstrated that this process can generate small amounts of electricity that might be used to power electronic devices.

Study: U.S. Alzheimer's rate seems to be dropping

July 15, 2014 3:17 am | by Marilynn Marchione - AP Chief Medical Writer - Associated Press | News | Comments

The rate of Alzheimer's disease and other dementias is falling in the U.S. and some other rich countries—good news about an epidemic that is still growing simply because more people are living to an old age, new studies show. An American over age 60 today has a 44% lower chance of developing dementia than a similar-aged person did roughly 30 years ago, the longest study of these trends in the U.S. concluded.

Researchers demonstrate novel, tunable nanoantennas

July 14, 2014 1:39 pm | News | Comments

A research team in Illinois has built a new type of tunable nanoscale antenna that could facilitate optomechanical systems that actuate mechanical motion through plasmonic field enhancements. The team’s fabrication process shows for the first time an innovative way of fabricating plasmonic nanoantenna structures under a scanning electron microscope, which avoids complications from conventional lithography techniques.

Flower development in 3-D: Timing is the key

July 14, 2014 11:48 am | News | Comments

Developmental processes in all living organisms are controlled by genes. At the same time there is a continuous metabolism taking place. Recent research in Austria has analyzed this interaction in flowering plants. For the first time, changes in metabolism were linked to 3-D morphometric data using micro-computed tomography (micro-CT) for the first time.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading