Advertisement
General Sciences
Subscribe to General Sciences

The Lead

California drought linked to climate change

September 30, 2014 9:42 am | by Ker Than, Stanford Univ. | Videos | Comments

The atmospheric conditions associated with the unprecedented drought currently afflicting California are "very likely" linked to human-caused climate change, according to Stanford Univ. scientists. The team used a combination of computer simulations and statistical techniques to show that a persistent region of high atmospheric pressure hovering over the Pacific Ocean was likely to form from modern greenhouse gas concentrations.

Glaciers in the Grand Canyon of Mars?

September 30, 2014 8:56 am | News | Comments

For...

Research suggests new strategies for fighting TB

September 30, 2014 8:22 am | by Kevin Stacey, Brown Univ. | News | Comments

Over the past few years, a class of compounds called ADEPs (cyclic acyldepsipeptides) has...

Wildlife populations plummet for 3,000 species

September 30, 2014 8:19 am | by John Heilprin, Associated Press | News | Comments

About 3,...

View Sample

FREE Email Newsletter

At the interface of math and science

September 30, 2014 8:09 am | by Julie Cohen, UC Santa Barbara | News | Comments

Univ. of California, Santa Barbara’s Paul Atzberger, a professor in the Department of Mathematics and in mechanical engineering, often works in areas where mathematics plays an ever more important role in the discovery and development of new ideas. Most recently he has developed new mathematical approaches to gain insights into how proteins move around within lipid bilayer membranes.

Automated sorting through metagenomes

September 30, 2014 8:05 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Microbes have an amazing ability to feed on plant biomass and convert it into other chemical products. Tapping into this talent has the potential to revolutionize energy, medicine, environmental remediation and many other fields. The success of this effort hinges in part on metagenomics, the emerging technology that enables researchers to read all the individual genomes of a sample microbial community at once.

Researchers develop transparent nanoscintillators for radiation detection

September 30, 2014 7:56 am | by Traci Peterson, Univ. of Texas at Arlington | News | Comments

A Univ. of Texas at Arlington research team says recently identified radiation detection properties of a light-emitting nanostructure built in their lab could open doors for homeland security and medical advances. In a paper to be published in Optics Letters, the team describes a new method to fabricate transparent nanoscintillators by heating nanoparticles composed of lanthanum, yttrium and oxygen until a transparent ceramic is formed.

Advertisement

Fat molecules influence form, function of key photosynthesis protein

September 30, 2014 7:48 am | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

A mysterious space within a protein critical to photosynthesis is filled with fat molecules that influence both the protein’s architecture and electrical properties, according to two recent studies. Researchers studied the atomic structure of, and electrical interactions within, the cytochrome bf complex, a protein complex central to the transport of electrons within membranes of a plant cell, a critical step in photosynthesis.

High-speed drug screen

September 30, 2014 7:37 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have devised a way to rapidly test hundreds of different drug-delivery vehicles in living animals, making it easier to discover promising new ways to deliver a class of drugs called biologics, which includes antibodies, peptides, RNA and DNA, to human patients.

Scientists make droplets move on their own

September 29, 2014 12:51 pm | Videos | Comments

Droplets are simple spheres of fluid, not normally considered capable of doing anything on their own. But now researchers have made droplets of alcohol move through water, even moving through complex mazes. The droplets can be led to certain targets, using a surprisingly simple impetus. In the future, such moving droplets may deliver medicines, moving entire chemistries to targets.

Scientists improve microscopic batteries with homebuilt imaging analysis

September 29, 2014 12:26 pm | News | Comments

In a rare case of having their cake and eating it too, scientists from NIST and other institutions have developed a toolset that allows them to explore the complex interior of tiny, multi-layered batteries they devised. It provides insight into the batteries’ performance without destroying them, which results in both a useful probe for scientists and a potential power source for micromachines.

Biologists find early sign of cancer

September 29, 2014 11:10 am | by Anne Trafton, MIT News Office | News | Comments

Years before they show any other signs of disease, pancreatic cancer patients have very high levels of certain amino acids in their bloodstream, according to a new study. This finding, which suggests that muscle tissue is broken down in the disease’s earliest stages, could offer new insights into developing early diagnostics for pancreatic cancer, which kills about 40,000 Americans every year.

Advertisement

Simulations reveal an unusual death for ancient stars

September 29, 2014 11:01 am | by Linda Vu, Lawrence Berkeley National Laboratory | News | Comments

Certain primordial stars—those between 55,000 and 56,000 times the mass of our sun, or solar masses—may have died unusually. In death, these objects—among the universe’s first-generation of stars—would have exploded as supernovae and burned completely, leaving no remnant black hole behind.

Unlocking enzyme synthesis of rare sugars to create drugs with fewer side effects

September 29, 2014 8:57 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

An Oak Ridge National Laboratory team has unlocked the enzymatic synthesis process of rare sugars, which are useful in developing drugs with low side effects. In a recently published paper, the team reported the pioneering use of neutron and x-ray crystallography and HPC to study how the enzyme D-xylose isomerase, or XI, can cause a biochemical reaction in natural sugar to produce rare sugars.

Green light for clever algae

September 29, 2014 8:46 am | by Meike Drießen, Ruhr Univ. Bochum | News | Comments

Cryptophytes, complex single-cell algae that make up a lot of the ocean's phytoplankton, have, in the course of evolution, adapted their light-harvesting mechanisms to their environment and have thus become capable of utilizing green light. Researchers in Germany have recently been the first ones to reveal similarities and differences in the assembly of this light-harvesting machinery compared to cyanobacteria and red algae.

New molecule found in space connotes life origins

September 29, 2014 8:43 am | by Blaine Friedlander, Cornell Univ. | News | Comments

Hunting from a distance of 27,000 light years, astronomers have discovered an unusual carbon-based molecule—one with a branched structure—contained within a giant gas cloud in interstellar space. Like finding a molecular needle in a cosmic haystack, astronomers have detected radio waves emitted by isopropyl cyanide. The discovery suggests that the complex molecules needed for life may have their origins in interstellar space.

New imaging capability reveals possible key to extending battery lifetime, capacity

September 29, 2014 8:37 am | by Tona Kunz, Argonne National Laboratory | News | Comments

A novel x-ray technique used at the U.S. Department of Energy’s Advanced Photon Source has revealed surprising dynamics in the nanomechanics of operating batteries and suggests a way to mitigate battery failures by minimizing the generation of elastic energy. The method could open a path to wider use of these batteries in conjunction with renewable energy sources.

Advertisement

Pixel-engineered electronics have growth potential

September 29, 2014 8:19 am | by Mike Williams, Rice Univ. | News | Comments

A little change in temperature makes a big difference for growing a new generation of hybrid atomic-layer structures, according to scientists. Rice Univ. scientists led the first single-step growth of self-assembled hybrid layers made of two elements that can either be side by side and one-atom thick or stacked atop each other. The structure’s final form can be tuned by changing the growth temperature.

How to make a “perfect” solar absorber

September 29, 2014 8:08 am | by David L. Chandler, MIT News Office | News | Comments

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material’s spectrum of absorption just right: It should absorb virtually all wavelengths of light that reach Earth’s surface from the sun—but not much of the rest of the spectrum, since that would increase the energy that is reradiated by the material, and thus lost to the conversion process.

Goodyear aims to use rice husk byproduct in tires

September 28, 2014 10:36 am | by Mark Gillispie - Associated Press - Associated Press | News | Comments

One of the world's biggest tire manufacturers is taking another step toward more environmentally friendly production by incorporating a byproduct created by the burning of rice husks into a material used in high-end tires. Akron-based Goodyear is embracing a technology that converts the ash that remains from burned rice husks into silica, which has been used in tire production for two decades.

Multi-spectra “glasses” aid studies of light elements with SEMs

September 26, 2014 11:16 am | News | Comments

Scanning electron microscopes can determine chemical compositions with the help of energy dispersive spectrometers. However, lighter elements like carbon emit secondary fluorescence in an energy range insufficiently resolved by these instruments. Physicists have developed a potential solution to this problem by adding reflection zone plate optics to a specialized spectrometer that delivers high resolution from 50 to 1,120 eV.

Cell sorting method separates 10 billion cells in 30 minutes

September 26, 2014 9:42 am | News | Comments

Almost all of today’s previously existing cell-sorting methods rely on what is called a single-cell analysis platform. A researcher in Hawaii took a different approach, inventing a bulk method that sorts different cell populations by tuning their solubility. Instead of targeting individual features, the  measurement principle sorts cells by differentiating their characteristic surface free energies.

Neutron vision: Going beyond x-rays for advanced imaging in the field

September 26, 2014 9:32 am | News | Comments

Seeking to expand the United States' capability to detect and identify materials that are not easily visualized, DARPA this week released an announcement inviting proposals to develop portable, next-generation imaging tools that combine the complementary benefits of x-rays, which efficiently detect heavier elements, and neutron radiography, which is not as portable as x-ray detectors but can identify liquids and lighter elements.

A prison for photons in a diamond-like photonic crystal

September 26, 2014 9:08 am | News | Comments

Confined photons have many potential applications, such as efficient miniature lasers, on-chip information storage, or tiny sensors on pharmaceuticals. Making a structure that can capture photons is difficult, but scientists in the Netherlands have recently devised a new type of resonant cavity inside a photonic crystal that imprisons light in all three dimensions.

Protein “map” could lead to potent new cancer drugs

September 26, 2014 8:55 am | News | Comments

Chemists in the U.K. have gained fresh insights into how a disease-causing enzyme makes changes to proteins and how it can be stopped. The scientists hope their findings will help them to design drugs that could target the enzyme, known as N-myristoyltransferase (NMT), and potentially lead to new treatments for cancer and inflammatory conditions.

Discovery could pave way for spin-based computing

September 26, 2014 8:48 am | by Joe Miksch, Univ. of Pittsburgh | News | Comments

Electricity and magnetism rule our digital world. Semiconductors process electrical information, while magnetic materials enable long-term data storage. A Univ. of Pittsburgh research team has discovered a way to fuse these two distinct properties in a single material, paving the way for new ultrahigh density storage and computing architectures.

NASA finds clear skies and water vapor on exoplanet

September 26, 2014 8:42 am | News | Comments

Astronomers using data from NASA's space telescopes Hubble, Spitzer, and Kepler have discovered clear skies and steamy water vapor on a gaseous planet outside our solar system. The planet is about the size of Neptune, making it the smallest planet from which molecules of any kind have been detected.

Researcher works to predict electric power blackouts before they happen

September 26, 2014 8:34 am | by Katie Jones, Oak Ridge National Laboratory | News | Comments

The largest power outage in U.S. history, the 2003 Northeast blackout, began with one power line in Ohio going offline and ended with more than 50 million people without power throughout the Northeast and the Canadian province of Ontario. Despite the apparent failure of the electric grid during such cascading events, blackouts aren’t necessarily grid failures.

The water in your bottle might be older than the sun

September 26, 2014 8:13 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

Up to half of the water on Earth is likely older than the solar system itself, Univ. of Michigan astronomers theorize. The researchers' work helps to settle a debate about just how far back in galactic history our planet and our solar system's water formed. Were the molecules in comet ices and terrestrial oceans born with the system itself—in the planet-forming disk of dust and gas that circled the young sun 4.6 billion years ago?

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading