Advertisement
General Sciences
Subscribe to General Sciences

The Lead

Hybrid memory device for superconducting computing

January 26, 2015 12:20 pm | by NIST | News | Comments

Scientists have demonstrated a nanoscale memory technology for superconducting computing that could hasten the advent of an urgently awaited, low-energy alternative to power-hungry conventional data centers and supercomputers. In recent years, the stupendous and growing data demands of cloud computing, expanded Internet use, mobile device support and other applications have prompted the creation of large, centralized computing facilities.

Scaffolding is in charge of calcium carbonate crystals

January 26, 2015 11:45 am | by Mary Beckman, Pacific Northwest National Laboratory | News | Comments

Nature packs away carbon in chalk, shells and rocks made by marine organisms that crystallize...

Nanoshuttle wear and tear: It’s the mileage, not the age

January 26, 2015 11:36 am | by Holly Evarts, Columbia Univ. | News | Comments

As nanomachine design rapidly advances, researchers are moving from wondering if the nanomachine...

Researchers identify materials to improve biofuel, petroleum processing

January 26, 2015 10:57 am | by Univ. of Minnesota | News | Comments

Using one of the largest supercomputers in the world, a team of researchers led by the Univ. of...

View Sample

FREE Email Newsletter

Visualizing interacting electrons in a molecule

January 26, 2015 10:48 am | by Peter Liljeroth, Aalto Univ. | News | Comments

Understanding this electronic effect in organic molecules is crucial for their use in optoelectronic applications. In their article published in Nature Physics, the research team demonstrates measurements on the organic molecule cobalt phthalocyanine (CoPC) that can be explained only by taking into consideration how electrons in the molecule interact with each other.

Weighing gas with sound and microwaves

January 26, 2015 10:30 am | by NIST | News | Comments

NIST scientists have developed a novel method to rapidly and accurately calibrate gas flow meters, such as those used to measure natural gas flowing in pipelines, by applying a fundamental physical principle: When a sound wave travels through a gas containing temperature gradients, the sound wave's average speed is determined by the average temperature of the gas.

Researchers make magnetic graphene

January 26, 2015 10:22 am | by Univ. of California, Riverside | News | Comments

Graphene has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic impurities, but this doping tends to disrupt graphene's electronic properties. Now a team of physicists at the Univ. of California, Riverside has found an ingenious way to induce magnetism in graphene while also preserving graphene's electronic properties.

Advertisement

New step towards future production of solar fuels

January 26, 2015 9:31 am | by Linda Koffmar, Uppsala Univ. | News | Comments

One way of storing solar energy is to transform the energy directly into a fuel. Researchers at Uppsala Univ. have shown a reaction which makes the process of creating fuel from solar energy more efficient and less energy demanding. Solar energy is abundant. In one hour, the Earth receives as much energy from the sun as humankind uses in a whole year.

Chemists find a way to unboil eggs

January 26, 2015 9:25 am | by Janet Wilson, Univ. of California, Irvine | News | Comments

Univ. of California, Irvine and Australian chemists have figured out how to unboil egg whites, an innovation that could dramatically reduce costs for cancer treatments, food production and other segments of the $160 billion global biotechnology industry, according to findings published in ChemBioChem.

Possible drone found on White House grounds

January 26, 2015 9:17 am | by Nedra Pickler, Associated Press | News | Comments

A device, possibly an unmanned aerial drone, was found on the White House grounds during the middle of the night while President Barack Obama and the first lady were in India, but his spokesman said today that it posed no threat. It was unclear whether their daughters, Sasha and Malia, were at home at the time of the incident with their grandmother, Marian Robinson, who also lives at the White House.

Entanglement on a chip

January 26, 2015 9:12 am | by Lyndsay Meyer, The Optical Society | News | Comments

Unlike Bilbo's magic ring, which entangles human hearts, engineers have created a new microring that entangles individual particles of light, an important first step in a whole host of new technologies. Entanglement is one of the most intriguing and promising phenomena in all of physics. Properly harnessed, entangled photons could revolutionize computing, communications and cyber security.

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons

January 26, 2015 8:51 am | by Institute of Transformative Biomolecules, Nagoya Univ. | News | Comments

A team of chemists at Nagoya Univ. has synthesized novel transition metal-complexed cycloparaphenylenes (CPPs) that enable selective monofunctionalization of CPPs for the first time, opening doors to the construction of unprecedented nanocarbons. The team has synthesized novel CPP chromium complexes and demonstrated their utility in obtaining monofunctionalized CPPs, which could be useful for making carbon nanotubes.

Advertisement

Scientists shed new light on biomass breakdown

January 26, 2015 8:18 am | by David Garner, Senior Press Officer, Univ. of York | News | Comments

Scientists at the Univ. of York are part of a research team which has found that a recently discovered family of enzymes can degrade resistant forms of starch. Earlier research established that the enzymes, lytic polysaccharide monooxygenases (LPMOs), are able to degrade hard-to-digest biomass into its constituent sugars.

Improvements in transistors will make flexible plastic computers a reality

January 26, 2015 8:11 am | by National Institute for Materials Science | News | Comments

Researchers in Japan revealed that improvements should soon be expected in the manufacture of transistors that can be used, for example, to make flexible, paper-thin computer screens. The scientists reviewed the latest developments in research on photoactive organic field-effect transistors, devices that incorporate organic semiconductors, amplify weak electronic signals and either emit or receive light.

Engineering discovery brings invisibility closer to reality

January 26, 2015 8:01 am | by Pete Brown, UA College of Engineering | News | Comments

Since the beginning of recorded time, humans have used materials found in nature to improve their lot. Since the turn of this century, scientists have studied metamaterials, artificial materials engineered to bend electromagnetic, acoustic and other types of waves in ways not possible in nature. Now, a discovery has been made with these synthetic materials that may take engineers one step closer to building microscopes with superlenses.

Structure control unlocks magnetization, polarization simultaneously

January 26, 2015 7:53 am | by Univ. of Liverpool | News | Comments

Scientists at the Univ. of Liverpool have controlled the structure of a material to simultaneously generate both magnetization and electrical polarization, an advance which has potential applications in information storage and processing. The researchers demonstrated that it's possible to unlock these properties in a material which initially displayed neither by making designed changes to its structure.

Navy wants to increase use of sonar-emitting buoys

January 25, 2015 12:18 pm | by Phuong Le, Associated Press | News | Comments

The U.S. Navy is seeking permits to expand sonar and other training exercises off the Pacific Coast, a proposal raising concerns from animal advocates who say that more sonar-emitting buoys would harm whales and other creatures that live in the water. The Navy wants to deploy up to 720 sonobuoys at least 12 nautical miles off the coasts of Washington, Oregon and Northern California.

Advertisement

Infrared imaging technique operates at high temperatures

January 23, 2015 4:19 pm | by Amanda Morris, Northwestern Univ. | News | Comments

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming more attractive. Currently, commercial technologies for MWIR detection can only operate at cryogenic temperatures in order to reduce thermal and electrical noise.

Graphene edges can be tailor-made

January 23, 2015 3:27 pm | by Mike Williams, Rice Univ. | News | Comments

Theoretical physicists at Rice Univ. are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get the edges they need for applications. New research shows it should be possible to control the edge properties of graphene nanoribbons by controlling the conditions under which the nanoribbons are pulled apart.

Calculating the future of solar-fuel refineries

January 23, 2015 2:01 pm | by Scott Gordon, Univ. of Wisconsin-Madison | News | Comments

A team of Univ. of Wisconsin-Madison engineers has developed a new tool to help plot the future of solar fuels. In a paper recently published in Energy & Environmental Science, a team outlined a tool to help engineers better gauge the overall yield, efficiency and costs associated with scaling solar-fuel production processes up into large-scale refineries.

Silver nanowires demonstrate unexpected self-healing mechanism

January 23, 2015 1:56 pm | by Amanda Morris, Northwestern Univ. | News | Comments

With its high electrical conductivity and optical transparency, indium tin oxide is one of the most widely used materials for touchscreens, plasma displays and flexible electronics. But its rapidly escalating price has forced the electronics industry to search for other alternatives. One potential and more cost-effective alternative is a film made with silver nanowires embedded in flexible polymers.

Oranges versus orange juice: Which one might be better for your health?

January 23, 2015 10:47 am | by American Chemical Society | News | Comments

Many health advocates advise people to eat an orange and drink water rather than opt for a serving of sugary juice. But in the Journal of Agricultural and Food Chemistry, scientists report that the picture is not clear-cut. Although juice is indeed high in sugar, the scientists found that certain nutrients in orange juice might be easier for the body to absorb than when a person consumes them from unprocessed fruit.

Technique helps probe performance of organic solar cell materials

January 23, 2015 10:33 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team has developed a new technique for determining the role that a material’s structure has on the efficiency of organic solar cells, which are candidates for low-cost, next-generation solar power. The researchers have used the technique to determine that materials with a highly organized structure at the nanoscale are not more efficient at creating free electrons than poorly organized structures.

Nanotechnology changes behavior of materials

January 23, 2015 9:52 am | by Julie Hail Flory, Washington Univ., St. Louis | News | Comments

One of the reasons solar cells are not used more widely is cost: The materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices don’t work as well. A team of engineers has developed a technique to increase the performance and electrical conductivity of thin films that make up these materials using nanotechnology.

New technique for producing cheaper solar energy

January 23, 2015 9:41 am | by Jo Bowler, Univ. of Exeter | News | Comments

A team of experts from the Univ. of Exeter has examined new techniques for generating photovoltaic (PV) energy more cost efficiently. The global PV market has experienced rapid growth in recent years due to renewable energy targets and carbon dioxide emission controls. However, current, widely used commercial methods employed to generate PV energy, such as using silicon or thin-film-based technologies, are still expensive.

Slowing down the speed of light traveling through air

January 23, 2015 9:30 am | by Univ. of Glasgow | News | Comments

Scientists have long known that the speed of light can be slowed slightly as it travels through materials such as water or glass. However, it has generally been thought impossible for particles of light, known as photons, to be slowed as they travel through free space, unimpeded by interactions with any materials.

Research recreates planet formation, giant planets in the laboratory

January 23, 2015 9:14 am | by Breanna Bishop, Lawrence Livermore National Laboratory | News | Comments

New laser-driven compression experiments reproduce the conditions deep inside exotic super-Earths and giant planet cores, and the conditions during the violent birth of Earth-like planets, documenting the material properties that determined planet formation and evolution processes. The experimentsreveal the unusual properties of silica under the extreme pressures and temperatures relevant to planetary formation and interior evolution.

“Predicted” zeolites may fuel efficient processes

January 23, 2015 8:45 am | by Mike Williams, Rice Univ. | News | Comments

Scientists have identified synthetic materials that may purify ethanol more efficiently and greatly improve the separation of long-chain hydrocarbons in petroleum refining. The results show that predictive modeling of synthetic zeolites is highly effective and can help solve some of the most challenging problems facing industries that require efficient ways to separate or catalyze materials.

Exotic, gigantic molecules fit inside each other

January 23, 2015 8:25 am | by Steve Koppes, Univ. of Chicago | News | Comments

Univ. of Chicago scientists have experimentally observed, for the first time, a phenomenon in ultracold, three-atom molecules predicted by Russian theoretical physicist Vitaly Efimov in 1970. In this quantum phenomenon, called geometric scaling, the triatomic molecules fit inside one another like an infinitely large set of Russian nesting dolls.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading