Advertisement
Energy
Subscribe to Energy
View Sample

FREE Email Newsletter

NTSB points to battery defect in Boeing 787 fire

December 1, 2014 3:01 pm | by By Joan Lowy - Associated Press - Associated Press | News | Comments

A short circuit likely due to a manufacturing defect in a Boeing 787 airliner battery caused a fire last year that grounded the planes for more than three months, federal accident investigators said Monday. They also faulted the plane's maker and the Federal Aviation Administration for designing and approving a battery design that didn't protect against such a failure.

High-tech mirror to beam heat away from buildings into space

December 1, 2014 10:24 am | by Chris Cesare, Stanford Univ. | News | Comments

Stanford Univ. engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space. The heart of the invention is an ultra-thin, multi-layered material that deals with light, both invisible and visible, in a new way.

New technique could harvest more of the sun’s energy

December 1, 2014 8:32 am | by Jessica Stoller-Conrad, Caltech | News | Comments

As solar panels become less expensive and capable of generating more power, solar energy is becoming a more commercially viable alternative source of electricity. However, the photovoltaic cells now used to turn sunlight into electricity can only absorb and use a small fraction of that light, and that means a significant amount of solar energy goes untapped. A new technology epresents a first step toward harnessing that lost energy.

Advertisement

Matched hybrid systems may hold key to wider use of renewable energy

December 1, 2014 8:09 am | by David Stauth, Oregon State Univ. | News | Comments

The use of renewable energy in the U.S. could take a significant leap forward with improved storage technologies or more efforts to “match” different forms of alternative energy systems that provide an overall more steady flow of electricity. Historically, a major drawback to the use and cost-effectiveness of alternative energy systems has been that they are too variable. This lack of dependability is costly and inefficient.

Protons fuel graphene prospects

November 26, 2014 9:11 am | by Univ. of Manchester | News | Comments

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, Univ. of Manchester researchers have found. Published in Nature, the discovery could revolutionize fuel cells and other hydrogen-based technologies as they require a barrier that only allow protons to pass through.

Gasoline from sawdust

November 26, 2014 8:45 am | by KU Leuven | News | Comments

Researchers at KU Leuven’s Centre for Surface Chemistry and Catalysis have successfully converted sawdust into building blocks for gasoline. Using a new chemical process, they were able to convert the cellulose in sawdust into hydrocarbon chains. These hydrocarbons can be used as an additive in gasoline, or as a component in plastics.

Blu-ray disc can be used to improve solar cell performance

November 25, 2014 8:23 pm | by Northwestern Univ. | News | Comments

Who knew Blu-ray discs were so useful? Already one of the best ways to store high-definition movies and television shows because of their high-density data storage, Blu-ray discs also improve the performance of solar cells, according to new research from Northwestern Univ.

Model evaluates where bioenergy crops grow best

November 24, 2014 7:59 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Farmers interested in bioenergy crops now have a resource to help them determine which kind of bioenergy crop would grow best in their regions and what kind of harvest to expect. Researchers at the Univ. of Illinois have published a study identifying yield zones for three major bioenergy crops.

Advertisement

Advancements in battery technology shaping the future of electronic vehicles

November 21, 2014 9:57 am | by Canadian Light Source | News | Comments

Scientists at the Canadian Light Source are on the forefront of battery technology using cheaper materials with higher energy and better recharging rates that make them ideal for electric vehicles (EVs). The switch from conventional internal combustion engines to EVs is well underway. However, limited mileage of current EVs due to the confined energy storage capability of available battery systems is why these vehicles aren't more common.

Discovery sheds light on nuclear reactor fuel behavior during a severe event

November 21, 2014 7:43 am | by Anglea Hardin, Argonne National Laboratory | News | Comments

A new discovery about the atomic structure of uranium dioxide will help scientists select the best computational model to simulate severe nuclear reactor accidents. Using the Advanced Photon Source, a team of researchers found that the atomic structure of uranium dioxide (UO2) changes significantly when it melts.

Center Stage: The High Rollers of S&T Industry Honored at 2014 R&D 100 Awards

November 20, 2014 12:06 pm | by Lindsay Hock, Managing Editor | Award Winners

The R&D 100 Awards have a 50+ year history of recognizing excellence in innovation, earning the name the “Oscars of Invention." And at the annual event, the high rollers of the science and technology industry were honored on stage for their innovative, high-tech products and processes that are, or will, make a difference in our everyday lives.

Could hydrogen vehicles take over as the “green” car of choice?

November 20, 2014 7:59 am | by American Chemical Society | News | Comments

Now that car makers have demonstrated through hybrid vehicle success that consumers want less-polluting tailpipes, they are shifting even greener. In 2015, Toyota will roll out the first hydrogen fuel-cell car for personal use that emits only water. An article in Chemical & Engineering Newsexplains how hydrogen could supplant hybrid and electric car technology.

Fool’s gold as a solar material?

November 19, 2014 7:47 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

As the installation of photovoltaic solar cells continues to accelerate, scientists are looking for inexpensive materials beyond the traditional silicon that can efficiently convert sunlight into electricity. Theoretically, iron pyrite could do the job, but when it works at all, the conversion efficiency remains frustratingly low. Now, a Univ. of Wisconsin-Madison research team explains why that is.

Advertisement

Graphene/nanotube hybrid benefits flexible solar cells

November 17, 2014 3:37 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have invented a novel cathode that may make cheap, flexible dye-sensitized solar cells practical. The Rice laboratory of materials scientist Jun Lou created the new cathode, one of the two electrodes in batteries, from nanotubes that are seamlessly bonded to graphene and replaces the expensive and brittle platinum-based materials often used in earlier versions.

Huge solar plant lags in early production

November 17, 2014 3:01 pm | by Michael R. Blood - Associated Press - Associated Press | News | Comments

The largest solar power plant of its type in the world isn't producing as much energy as planned. One of the reasons is as basic as it gets: The sun isn't shining as much as expected. The Ivanpah Solar Electric Generating System opened in February, with operators saying it would produce enough electricity to power a city of 140,000 people.

Solar-friendly form of silicon shines

November 17, 2014 11:16 am | by Carnegie Institute | News | Comments

Silicon is the second-most-abundant element in the Earth's crust. When purified, it takes on a diamond structure, which is essential to modern electronic devices—carbon is to biology as silicon is to technology. A team of Carnegie scientists has synthesized an entirely new form of silicon, one that promises even greater future applications.

New method for methanol processing could reduce carbon dioxide emissions

November 17, 2014 8:33 am | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

Researchers at the Univ. of California, Los Angeles Henry Samueli School of Engineering and Applied Science have developed a more efficient way to turn methanol into useful chemicals, such as liquid fuels, and that would also reduce carbon dioxide emissions. Methanol, which is a product of natural gas, is well-known as a common “feedstock” chemical.

Smartphone app to cut risk of power outages

November 14, 2014 10:45 am | by Carl Blesch, Rutgers Univ. | News | Comments

An easy-to-use smartphone app developed by Rutgers Univ. engineers will help keep the lights on in a heavily wooded New Jersey suburb that suffered widespread power outages during Superstorm Sandy. The smartphone app walks users through documenting hazards, such as branches dangling perilously close to wires or poles cracking and leaning.

2015 R&D 100 Awards entries now open

November 13, 2014 11:27 am | by Lindsay Hock, Managing Editor | News | Comments

The editors of R&D Magazine have announced the opening of the 2015 R&D 100 Awards entry process. The R&D 100 Awards have a 50 plus year history of awarding the 100 most technologically significant products of the year. Past winners have included sophisticated testing equipment, innovative new materials, chemistry breakthroughs, biomedical products, consumer items, high-energy physics and more.

Versatile process efficiently converts biomass to liquid fuel

November 12, 2014 8:05 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have demonstrated a new process to convert all biomass into liquid fuel, and the method could make possible mobile processing plants. The researchers at Purdue Univ. filed a patent application on the concept in 2008 and have now demonstrated that it works in laboratory experiments.

Japan's nuclear cleanup stymied by water woes

November 12, 2014 6:58 am | by Mari Yamaguchi - Associated Press - Associated Press | News | Comments

More than three years into the massive cleanup of Japan's tsunami-damaged nuclear power plant, only a tiny fraction of the workers are focused on key tasks such as preparing for the dismantling of the broken reactors and removing radioactive fuel rods. Instead, nearly all the workers at the Fukushima Dai-ichi plant are devoted to a single, enormously distracting problem: coping with the vast amount of contaminated water.

A billion holes can make a battery

November 11, 2014 9:19 am | by Martha Heil, Univ. of Maryland | Videos | Comments

Researchers at the Univ. of Maryland have invented a single tiny structure that includes all the components of a battery that they say could bring about the ultimate miniaturization of energy storage components. The structure is called a nanopore: a tiny hole in a ceramic sheet that holds electrolyte to carry the electrical charge between nanotube electrodes at either end.

Biochemistry detective work: Algae at night

November 10, 2014 11:05 am | by Carnegie Institute | News | Comments

Photosynthesis is probably the most well-known aspect of plant biochemistry. It enables plants, algae and select bacteria to transform the energy from sunlight during the daytime into chemical energy in the form of sugars and starches (as well as oils and proteins), and it involves taking in carbon dioxide from the air and releasing oxygen derived from water molecules.

Underperforming? Energy efficiency of HVAC equipment suffers due to poor installation

November 10, 2014 10:45 am | by NIST | News | Comments

The push for more efficient air conditioners and heat pumps aims to trim the 30% share of residential electrical energy use devoted to cooling and heating. But the benefits of improved energy-efficiency ratings can go for naught if the equipment is not installed properly, as verified in a recent study from NIST.

New materials yield record efficiency polymer solar cells

November 10, 2014 10:20 am | by Tracey Peake, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. and Hong Kong Univ. of Science and Technology have found that temperature-controlled aggregation in a family of new semiconducting polymers is the key to creating highly efficient organic solar cells that can be mass produced more cheaply. Their findings also open the door to experimentation with different chemical mixtures that comprise the active layers of the cells.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading