Advertisement
Energy
Subscribe to Energy
View Sample

FREE Email Newsletter

Technique helps probe performance of organic solar cell materials

January 23, 2015 10:33 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team has developed a new technique for determining the role that a material’s structure has on the efficiency of organic solar cells, which are candidates for low-cost, next-generation solar power. The researchers have used the technique to determine that materials with a highly organized structure at the nanoscale are not more efficient at creating free electrons than poorly organized structures.

New technique for producing cheaper solar energy

January 23, 2015 9:41 am | by Jo Bowler, Univ. of Exeter | News | Comments

A team of experts from the Univ. of Exeter has examined new techniques for generating photovoltaic (PV) energy more cost efficiently. The global PV market has experienced rapid growth in recent years due to renewable energy targets and carbon dioxide emission controls. However, current, widely used commercial methods employed to generate PV energy, such as using silicon or thin-film-based technologies, are still expensive.

“Predicted” zeolites may fuel efficient processes

January 23, 2015 8:45 am | by Mike Williams, Rice Univ. | News | Comments

Scientists have identified synthetic materials that may purify ethanol more efficiently and greatly improve the separation of long-chain hydrocarbons in petroleum refining. The results show that predictive modeling of synthetic zeolites is highly effective and can help solve some of the most challenging problems facing industries that require efficient ways to separate or catalyze materials.

Advertisement

Perovskites provide big boost in silicon solar cells

January 22, 2015 1:04 pm | by Mark Shwartz, Stanford Univ. | News | Comments

Stacking perovskites, a crystalline material, onto a conventional silicon solar cell dramatically improves the overall efficiency of the cell, according to a new study led by Stanford Univ. scientists. The researchers describe their novel perovskite-silicon solar cell in Energy & Environmental Science.

Engineers use x-rays to illuminate catalysis, revise theories

January 21, 2015 9:11 am | by Andrew Myers, Stanford Univ. | News | Comments

Many of today's most promising renewable energy technologies rely upon catalysts to expedite the chemical reactions at the heart of their potential. Catalysts are materials that enhance chemical reactions without being consumed in the process. For over a century, engineers across the world have engaged in a near-continual search for ways to improve catalysts for their devices and processes.

Research aims to improve lithium-based batteries

January 21, 2015 8:31 am | by Emil Venere, Purdue Univ. | News | Comments

Research probing the complex science behind the formation of "dendrites" that cause lithium-ion batteries to fail could bring safer, longer-lasting batteries capable of being charged within minutes instead of hours. The dendrites form on anode electrodes and may continue to grow until causing an internal short circuit, which results in battery failure and possible fire.

Self-assembled nanotextures create antireflective surface on silicon solar cells

January 21, 2015 8:05 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Reducing the amount of sunlight that bounces off the surface of solar cells helps maximize the conversion of the sun's rays to electricity, so manufacturers use coatings to cut down on reflections. Now scientists at Brookhaven National Laboratory show that etching a nanoscale texture onto the silicon material itself creates an antireflective surface that works as well as state-of-the-art thin-film multilayer coatings.

Sequestration on shaky ground

January 21, 2015 7:46 am | by Jennifer Chu, MIT News Office | News | Comments

Carbon sequestration promises to address greenhouse gas emissions by capturing carbon dioxide from the atmosphere and injecting it deep below the Earth’s surface, where it would permanently solidify into rock. The U.S. Environmental Protection Agency estimates that current carbon sequestration technologies may eliminate up to 90% of carbon dioxide emissions from coal-fired power plants.

Advertisement

How is oil cheap when we use so much?

January 16, 2015 12:16 pm | by Jonathan Fahey, Associated Press | News | Comments

The world burns enough oil-derived fuels to drain an Olympic-sized swimming pool four times every minute. Global consumption has never been higher—and is rising. Yet, the price of a barrel of oil has fallen by more than half over the past six months because the globe, experts say, is awash in oil.

Perovskites provide big boost to silicon solar cells

January 16, 2015 8:05 am | by Mark Shwartz, Stanford Univ. | News | Comments

Stacking perovskites onto a conventional silicon solar cell dramatically improves the overall efficiency of the cell, according to a new study led by Stanford Univ. scientists. The researchers describe their novel perovskite-silicon solar cell in Energy & Environmental Science.

Model analyzes water footprint of biofuels

January 15, 2015 12:03 pm | by Greg Cunningham, Argonne National Laboratory | News | Comments

A new version of an online tool created by Argonne National Laboratory will help biofuels developers gain a detailed understanding of water consumption of various types of feedstocks, aiding development of sustainable fuels that will reduce impact on limited water resources.

“Smart windows” have potential to keep heat our, save energy

January 15, 2015 9:53 am | by American Chemical Society | News | Comments

Windows allow brilliant natural light to stream into homes and buildings. Along with light comes heat that, in warm weather, we often counter with energy-consuming air conditioning. Now scientists are developing a new kind of "smart window" that can block out heat when the outside temperatures rise. The advance could one day help consumers better conserve energy on hot days and reduce electric bills.

New material, technique efficiently produce hydrogen, syngas fuel feedstock

January 15, 2015 8:00 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A team of chemical engineering researchers has developed a technique that uses a new catalyst to convert methane and water into hydrogen and a fuel feedstock called syngas with the assistance of solar power. The catalytic material is more than three times more efficient at converting water into hydrogen gas than previous thermal water-splitting methods.

Advertisement

Self-driving cars: Lower-cost navigation system developed

January 14, 2015 11:31 am | by Gabe Cherry, Univ. of Michigan | News | Comments

A new software system developed at the Univ. of Michigan uses video game technology to help solve one of the most daunting hurdles facing self-driving and automated cars—the high cost of the laser scanners they use to determine their location. Ryan Wolcott, a U-M doctoral candidate in computer science and engineering, estimates that it could shave thousands of dollars from the cost of these vehicles.

Berkley Lab illuminates price premiums for U.S. solar home sales

January 14, 2015 8:14 am | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

A multi-institutional research team of scientists led by Lawrence Berkley National Laboratory, in partnership with Sandia National Laboratories, universities and appraisers, found that home buyers consistently have been willing to pay more for homes with host-owned solar photovoltaic (PV) energy systems—averaging about $4/W of PV installed—across various states, housing and PV markets and home types.

Crush those clinkers while they’re hot

January 14, 2015 7:48 am | by Mike Williams, Rice Univ. | News | Comments

Making cement is a centuries-old art that has yet to be perfected, according to researchers at Rice Univ. who believe it can be still more efficient. Former Rice graduate student Lu Chen and materials scientist Rouzbeh Shahsavari calculated that fine-tuning the process by which round lumps of calcium silicate called clinkers are turned into cement can save a lot of energy.

Glass for battery electrodes

January 13, 2015 11:51 am | by ETH Zurich | News | Comments

For some time now, energy experts have been adamant that we will need much more clean energy in the future if we are to replace fossil fuel sources and reduce carbon dioxide emissions. For example, electric cars will need to replace the petrol-powered cars driving on our roads.

Solar cell polymers with multiplied electrical output

January 13, 2015 8:52 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

One challenge in improving the efficiency of solar cells is some of the absorbed light energy is lost as heat. So scientists have been looking to design materials that can convert more of that energy into useful electricity. Now a team from Brookhaven National Laboratory and Columbia Univ. has paired up polymers that recover some of that lost energy by producing two electrical charge carriers per unit of light instead of the usual one.

One step closer to a next-generation electric car battery

January 12, 2015 11:22 am | by Nick Manning, Univ. of Waterloo | News | Comments

An ultra-thin nanomaterial is at the heart of a major breakthrough by Univ. of Waterloo scientists who are in a global race to invent a cheaper, lighter and more powerful rechargeable battery for electric vehicles. Their discovery of a material that maintains a rechargable sulphur cathode helps to overcome a primary hurdle to building a lithium-sulphur battery.

GM to release affordable 200-mile e-Car in 2017

January 12, 2015 10:28 am | by Tom Krisher, Associated Press | News | Comments

General Motors plans to start selling an affordable electric car in 2017 that will be able to go 200 miles on a single charge. A person briefed on the matter told The Associated Press that GM plans to start selling a $30,000 battery powered family car called the Chevrolet Bolt sometime in 2017.

NYC to ban Styrofoam in green move

January 9, 2015 8:30 am | by Jonathan Lemire, Associated Press | News | Comments

New York City will move to the forefront of a growing environmental trend by banning food establishments from using plastic foam containers starting this summer, Mayor Bill de Blasio's administration announced. De Blasio's mayoral ban will fulfill an initiative begun by his predecessor, Michael Bloomberg, who first suggested banning the material in his final State of the City address, in 2013.

Compact batteries enhanced by spontaneous silver matrix formations

January 9, 2015 7:40 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

In a promising lithium-based battery, the formation of a highly conductive silver matrix transforms a material otherwise plagued by low conductivity. To optimize these multi-metallic batteries, scientists needed a way to see where, when and how these silver, nanoscale "bridges" emerge. Now, researchers have used x-rays to map this changing atomic architecture and revealed its link to the battery's rate of discharge.

Emissions-free cars get closer

January 8, 2015 12:06 pm | by Andrea Boyle Tippett, Univ. of Deleware | News | Comments

A Univ. of Delaware research team is considering the important question of what it will take to create an affordable emissions-free car. Hydrogen fuel cells may be the best option for powering zero-emission vehicles: Toyota has just introduced a hydrogen-powered car in Japan and will make them available in the U.S. in 2015.

Shedding light on why blue LEDs are so tricky to make

January 8, 2015 11:19 am | by Rebecca Caygill, Univ. College London | News | Comments

Scientists at Univ. College London, in collaboration with groups at the Univ. of Bath and the Daresbury Laboratory, have uncovered the mystery of why blue light-emitting diodes (LEDs) are so difficult to make, by revealing the complex properties of their main component—gallium nitride—using sophisticated computer simulations.

Argonne partners with industry on nuclear reactor work

January 8, 2015 7:54 am | by Greg Cunningham, Argonne National Laboratory | News | Comments

Argonne National Laboratory will work with three of the world's leading nuclear products and services companies on projects that could unlock the potential of advanced nuclear reactor designs, helping create a new generation of safer, more efficient reactors. 

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading