Advertisement
Energy
Subscribe to Energy
View Sample

FREE Email Newsletter

Process helps overcome obstacles to produce renewable fuels, chemicals

August 26, 2014 7:44 am | by National Renewable Energy Laboratory | News | Comments

There’s an old saying in the biofuels industry: “You can make anything from lignin except money.” But now, a new study may pave the way to challenging that adage. The study from the National Renewable Energy Laboratory demonstrates a concept that provides opportunities for the successful conversion of lignin into a variety of renewable fuels, chemicals, and materials for a sustainable energy economy.

Solar fuels as generated by nature

August 25, 2014 7:39 am | News | Comments

A research team investigating an important cofactor in photosynthesis, a manganese-calcium complex which uses solar energy to split water into molecular oxygen, have determined the exact structure of this complex at a crucial stage in the chemical reaction. The new insights into how molecular oxygen is formed at this metal complex may provide a blueprint for synthetic systems that could store sunlight energy in chemical energy carriers.

Report: Tesla building I-80 supercharger station

August 23, 2014 5:24 pm | by The Associated Press | News | Comments

Tesla Motors Inc. is building a supercharger station in the Sierra Nevada north of Lake Tahoe where drivers of the company's electric cars can recharge along Interstate 80, a newspaper says. Tesla officials previously announced plans to build a station near Truckee, Calif., about 30 miles southwest of Reno but hasn't confirmed an exact location or opening date.

Advertisement

Scientists develop water splitter that runs on ordinary AAA battery

August 22, 2014 7:27 am | by Mark Shwartz, Stanford Univ. | Videos | Comments

In 2015, American consumers will finally be able to purchase fuel cell cars from Toyota and other manufacturers. Although touted as zero-emissions vehicles, most of the cars will run on hydrogen made from natural gas, a fossil fuel that contributes to global warming. Now scientists at Stanford Univ. have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.

Nuclear reactor reliability: Fast test proves viable

August 21, 2014 8:12 am | by Kate McAlpine, Univ. of Michigan | News | Comments

A speedy way to mimic the aging of materials inside nuclear reactors has matched all aspects of the damage sustained by a real reactor component for the first time. The method could help the U.S. and other countries stay ahead of potential problems in reactors that run for 40 years or more and also test materials for building advanced reactors.

Water leads to chemical that gunks up biofuels production

August 21, 2014 7:53 am | by Mary Beckman, Pacific Northwest National Laboratory | Videos | Comments

Trying to understand the chemistry that turns plant material into the same energy-rich gasoline and diesel we put in our vehicles, researchers have discovered that water in the conversion process helps form an impurity which, in turn, slows down key chemical reactions. The study, which was reported online at the Journal of the American Chemical Society, can help improve processes that produce biofuels from plants.

Exporting coal to Asia could slash emissions

August 20, 2014 9:26 am | by Tim Lucas, Duke Univ. | News | Comments

Under the right scenario, exporting U.S. coal to power plants in South Korea could lead to a 21% drop in greenhouse gas emissions compared to burning the fossil fuel at plants in the U.S., according to a new Duke Univ.-led study. For the reduction to occur, U.S. plants would need to replace the exported coal with natural gas. And in South Korea, the imported coal must replace other coal as the power source.

Solar energy that doesn’t block the view

August 20, 2014 8:05 am | by Tom Oswald, Media Communications, Michigan State Univ. | News | Comments

A team of researchers at Michigan State Univ. has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through the window. It is called a transparent luminescent solar concentrator and can be used on buildings, cell phones and any other device that has a clear surface.

Advertisement

The power of salt

August 20, 2014 7:46 am | by Jennifer Chu, MIT News Office | News | Comments

Where the river meets the sea, there is the potential to harness a significant amount of renewable energy, according to a team of mechanical engineers at Massachusetts Institute of Technology. The researchers evaluated an emerging method of power generation called pressure retarded osmosis (PRO), in which two streams of different salinity are mixed to produce energy.

Particulate Filter Relies on RF

August 19, 2014 4:54 pm | Award Winners

Jointly developed by Filter Sensing Technologies Inc., Massachusetts Institute of Technology and Oak Ridge National Laboratory, the RF-DPF Diesel Particulate Filter Sensor is a radio frequency (RF)-based sensor and control system used to measure the amount, type and distribution of contaminants on ceramic diesel particulate filters (DPFs).

Calcium Loop for Carbon Capture

August 19, 2014 4:11 pm | Award Winners

Industrial Technology Research Institute’s HECLOT: High efficiency calcium looping technology is a carbon capture technology for fossil power plants and other industrial emission reductions. It loops calcium oxide and calcium carbonate (CaO/CaCO3) in a regenerative cycle to remove carbon dioxide in the post-combustion fumes of boilers. With integrated hydration, the technology has much higher CO2 capture efficiency and, potentially, much lower cost than other technologies.

A Better Battery Choice

August 19, 2014 2:31 pm | Award Winners

As consumers we are ever more connected these days through tablets, smartphones, smart watches, and smart glasses, while the abundance of apps has made our lives more convenient and interesting. However, the battery in these electronics barely lasts a day. SolidEnergy SystemsSolid Polymer Ionic Liquid (SPiL) rechargeable lithium battery could potentially be the biggest breakthrough in battery technology since Sony introduced the first Li-ion battery in 1991.

A New DDF Engine Conversion Kit

August 19, 2014 1:57 pm | Award Winners

PTT Public Co. Ltd.’s PTT DIESEL CNG is a new concept for DDF engine conversions which improves the gas engine characteristics by increasing the diesel replacement ratio to 50%, increasing engine efficiency 30% and reducing methane emission 30% compared with conventional technologies.

Advertisement

An Electric Charge

August 19, 2014 1:39 pm | Award Winners

Arkansas Power Electronics International Inc.’s High-Performance Silicon Carbide-based Plug-In Hybrid Electric Vehicle Battery Charger is a Level 2 isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices for application in electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs).

A Magnetic Solution to Power Flow

August 19, 2014 1:09 pm | Award Winners

The control of power flow in power systems is a major concern for utilities and system operators. But full power flow control has been prohibitively expensive, requiring large numbers of complicated and costly devices. As a result, power systems almost always operate sub-optimally at billions of dollars per year. A simple, magnetic-field-based valve-like device for power flow control, the Continuously Variable Series Reactor (CVSR), developed by Oak Ridge National Laboratory, SPX Transformer Solutions Inc. and the Univ. of Tennessee, has introduced substantial improvements.

A Leap in Power Generation

August 19, 2014 12:37 pm | Award Winners

Pacific Northwest National Laboratory’s Solar Thermochemical Advanced Reactor System (STARS) addresses a major criticism of solar energy, which, like wind power, can’t provide continuous output. Because of its design, STARS doesn’t require power plants to cease operations when the sun sets or clouds cover the sky.

Study: Price of wind energy in U.S. at all-time low

August 19, 2014 9:42 am | by Allen Chen, Lawrence Berkeley National Laboratory | News | Comments

Wind energy pricing is at an all-time low, according to a new report released by the U.S. Dept. of Energy and prepared by Lawrence Berkeley National Laboratory. The prices offered by wind projects to utility purchasers averaged just $25/MWh for projects negotiating contracts in 2013, spurring demand for wind energy.

Shale oil dividend could pay for smaller carbon footprint

August 19, 2014 8:16 am | by Natalie van Hoose, Purdue Univ. | News | Comments

Unanticipated economic benefits from the shale oil and gas boom could help offset the costs of substantially reducing the U.S.'s carbon footprint, Purdue Univ. agricultural economists say. Wally Tyner and Farzad Taheripour estimate that shale technologies annually provide an extra $302 billion to the U.S. economy relative to 2007, a yearly "dividend" that could continue for at least the next two decades, Tyner said.

Bionic liquids from lignin

August 19, 2014 7:44 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

While the powerful solvents known as ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels, an even more promising candidate is on the horizon—bionic liquids. Researchers at the Joint BioEnergy Institute have developed “bionic liquids” from lignin and hemicellulose, two by-products of biofuel production from biorefineries.

Why the hydrogen fuel cell vehicle rollout may now succeed

August 18, 2014 10:42 am | by Kat Kerlin, UC Davis News Service | News | Comments

A convergence of factors is propelling a market rollout of the hydrogen fuel cell vehicle, according to a new study. A key to hydrogen’s potential success is a new smart solution that clusters hydrogen fuel infrastructure in urban or regional networks, limiting initial costs and enabling an early market for the technology before committing to a full national deployment.

Recycling old batteries into solar cells

August 18, 2014 7:38 am | by David L. Chandler, MIT News Office | News | Comments

This could be a classic win-win solution: A system proposed by researchers at Massachusetts Institute of Technology recycles materials from discarded car batteries—a potential source of lead pollution—into new, long-lasting solar panels that provide emissions-free power. The system is based on a recent development in solar cells that makes use of a compound called perovskite.

A new look at what’s in “fracking” fluids raises red flags

August 15, 2014 9:23 am | News | Comments

As the oil and gas drilling technique called hydraulic fracturing (or “fracking”) proliferates, a new study on the contents of the fluids involved in the process raises concerns about several ingredients. Scientists say that out of nearly 200 commonly used compounds, there’s very little known about the potential health risks of about one-third, and eight are toxic to mammals.

Molecular shuttle speeds up hydrogen production

August 14, 2014 10:25 am | News | Comments

A research team in Europe has achieved significantly increase in the yield of hydrogen produced by the photocatalytic splitting of water. Their breakthrough in light-driven generation of hydrogen was achieved by using a novel molecular shuttle to enhance charge-carrier transport with semiconductor nanocrystals.

New material could be used for energy storage, conversion

August 13, 2014 11:50 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Lawrence Livermore National Laboratory researchers have made a material that is 10 times stronger and stiffer than traditional aerogels of the same density. This ultra-low-density, ultra-high surface area bulk material with an interconnected nanotubular makeup could be used in catalysis, energy storage and conversion, thermal insulation, shock energy absorption and high energy density physics.

Copper foam turns CO2 into useful chemicals

August 13, 2014 8:21 am | by Kevin Stacey, Brown Univ. | News | Comments

A catalyst made from a foamy form of copper has vastly different electrochemical properties from catalysts made with smooth copper in reactions involving carbon dioxide, a new study shows. The research, by scientists in Brown Univ.’s Center for the Capture and Conversion of CO2, suggests that copper foams could provide a new way of converting excess CO2 into useful industrial chemicals.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading