Advertisement
Thin films
Subscribe to Thin films

The Lead

Silver-glass sandwich structure acts as inexpensive color filter

February 13, 2015 10:37 am | by Amanda Morris, Northwestern Univ. | News | Comments

The engineering world just became even more colorful. Northwestern Univ. researchers have created a new technique that can transform silver into any color of the rainbow. Their simple method is a fast, low-cost alternative to color filters currently used in electronic displays and monitors.

Electronics you can wrap around your finger

February 10, 2015 11:51 am | by American Institute of Physics | News | Comments

Electronic devices have shrunk rapidly in the past decades, but most remain as stiff as the same...

Noncommittal material could make for hypersensitive magnetic direction detector

February 4, 2015 11:07 am | by Mark Esser, NIST | News | Comments

While the mysterious, unseen forces magnets project are now (mostly) well understood, they can...

Detecting chemical weapons with a color-changing film

January 29, 2015 8:39 am | by American Chemical Society | News | Comments

In today’s world, in which the threat of terrorism looms, there is an urgent need for fast,...

View Sample

FREE Email Newsletter

Nanotechnology changes behavior of materials

January 23, 2015 9:52 am | by Julie Hail Flory, Washington Univ., St. Louis | News | Comments

One of the reasons solar cells are not used more widely is cost: The materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices don’t work as well. A team of engineers has developed a technique to increase the performance and electrical conductivity of thin films that make up these materials using nanotechnology.

Theory details how ‘hot’ monomers affect thin-film formation

December 11, 2014 2:43 pm | by Mike Williams, Rice University | News | Comments

Researchers at Rice and the University of Maryland led by Rice theoretical physicist Alberto Pimpinelli devised the first detailed model to quantify what they believe was the last unknown characteristic of film formation through deposition by vacuum sublimation and chemical vapor deposition.

Streamlining thin-film processing saves time, energy

November 19, 2014 9:41 am | by South Dakota State University Communications Center | News | Comments

Energy storage devices and computer screens may seem worlds apart, but they're not. When Assoc. Prof. Qi Hua Fan set out to make a less expensive supercapacitor for storing renewable energy, he developed a new plasma technology that will streamline the production of display screens.

Advertisement

Research advances understanding of atomically thin crystal growth

November 19, 2014 9:24 am | by David Goddard, UT Knoxville | News | Comments

Univ. of Tennessee, Knoxville’s College of Engineering has made recent headlines for discoveries that, while atomically small, could impact our modern world. The team focused on the role of epilayer-substrate interactions in determining orientational relations in van der Waals epitaxy.

New way to move atomically thin semiconductors for use in flexible devices

November 13, 2014 8:51 am | by Matt Shipman, News Services, North Carolina State Univ. | Videos | Comments

Researchers from North Carolina State Univ. have developed a new way to transfer thin semiconductor films, which are only one atom thick, onto arbitrary substrates, paving the way for flexible computing or photonic devices. The technique is much faster than existing methods and can perfectly transfer the atomic scale thin films from one substrate to others, without causing any cracks.

Bending in search of new materials

November 11, 2014 2:15 pm | by Britt Faulstick, Drexel Univ. | News | Comments

Making a paper airplane in school used to mean trouble. Today it signals a promising discovery in materials science research that could help next-generation technology get off the ground. Researchers at Drexel Univ. and Dalian Univ. of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight.

Chemists gain edge in next-gen energy

November 3, 2014 1:37 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists who want to gain an edge in energy production and storage report they have found it in molybdenum disulfide. The Rice laboratory of chemist James Tour has turned molybdenum disulfide’s 2-D form into a nanoporous film that can catalyze the production of hydrogen or be used for energy storage.

“Swiss cheese” membrane with variable holes

October 31, 2014 10:01 am | News | Comments

A new membrane, developed scientists in the Netherlands, can be made more or less porous “on demand”. In this way, smart switching between “open” and “closed” is possible, which opens the way to innovative applications in biosensors, chemical analysis and catalysis.

Advertisement

Cheap and efficient method improves SERS

October 28, 2014 12:07 pm | News | Comments

Researchers with CiQUS in Spain have developed a new method to overcome limitations of surface enhanced Raman spectroscopy (SERS), an ultra-sensitive analytical technique able to detect chemicals in very low concentration. The research results show how to cut production costs of substrates and also tackle the lack of reproducibility usually associated to this technique.

Self-assembled membranes hint at biomedical applications

October 28, 2014 11:36 am | by David Lindley, Argonne National Laboratory | News | Comments

Techniques for self-assembling of molecules have grown increasingly sophisticated, but biological structures remain a challenge. Recently, scientists have used self-assembly under controlled conditions to create a membrane consisting of layers with distinctly different structures. At the Advanced Photon Source, the team has studied the structures and how they form, paving the way for hierarchical structures with biomedical applications.

Emergent behavior lets bubbles “sense” environment

October 27, 2014 12:46 pm | Videos | Comments

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new research. This behavior could be exploited in creating microbubbles that deliver drugs or other payloads inside the body, and could help us understand how the very first living cells on Earth might have survived billions of years ago.

Strengthening thin-film bonds with ultra-fast data collection

October 23, 2014 8:29 am | by Michael Baum, NIST | News | Comments

When studying extremely fast reactions in ultra-thin materials, two measurements are better than one. A new research tool invented by researchers at Lawrence Livermore National Laboratory (LLNL), Johns Hopkins Univ. and NIST captures information about both temperature and crystal structure during extremely fast reactions in thin-film materials.

Scientist invent new method for fabricating graphene nanoribbons

October 17, 2014 9:23 am | by Shaun Mason, UCLA | News | Comments

Graphene’s exotic properties can be tailored by cutting large sheets down to ribbons of specific lengths and edge configurations. But this “top-down” fabrication approach is not yet practical, because current lithographic techniques always produce defects. Now, scientists from the U.S. and Japan have discovered a new “bottom-up” self-assembly method for producing defect-free graphene nanoribbons with periodic zigzag-edge regions.

Advertisement

Researchers develop world’s thinnest electric generator

October 15, 2014 2:47 pm | News | Comments

Scientists report that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide. This finding has resulted in a unique electric generator and could point the way to mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

Tailored flexible illusion coatings hide objects from detection

October 13, 2014 10:53 am | News | Comments

Developing the cloak of invisibility would be wonderful, but sometimes simply making an object appear to be something else will do the trick, according to Penn State Univ. engineers. To do this, they employ what they call "illusion coatings," which are made of a thin flexible substrate with copper patterns designed to create the desired result. The metamaterial coatings can function normally while appearing as something else.

Unconventional photoconduction in an atomically thin semiconductor

October 7, 2014 3:36 pm | by David L. Chandler, MIT | News | Comments

It’s a well-known phenomenon in electronics: Shining light on a semiconductor, such as the silicon used in computer chips and solar cells, will make it more conductive. But now researchers have discovered that in a special semiconductor, light can have the opposite effect, making the material less conductive instead. This new mechanism of photoconduction could lead to next-generation excitonic devices.

New method creates scrolling nanosheets on demand

October 6, 2014 2:37 pm | by Poncie Rutsch, Okinawa Institute of Science and Technology | News | Comments

Nanoparticles could revolutionize the medical industry, but they must first target a specific region in the body, be trackable, and perform their function at the right moment. Researchers in Japan have made progress in this direction with a new type of nanomaterial: the nanosheet. Specifically, they have designed a strong, stable and optically traceable smart 2-D material that responds to pH, or the acidity or basicity of its environment.

Batteries included: A solar cell that stores its own power

October 3, 2014 9:07 am | by Pam Frost Gorder, Ohio State Univ. | News | Comments

The world’s first “solar battery”, invented by researchers at Ohio State Univ., is a battery and a solar cell combined into one hybrid device. Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

Creating nanostructures using simple stamps

October 2, 2014 1:31 pm | News | Comments

Nanostructures of virtually any possible shape can now be made using a combination of techniques developed to exploit the unique properties of so-called perovskites. The group based in the Netherlands, developed a pulsed laser deposition technique to create patterns in ultra thin layers, one atomic layer at a time. The perovskites’ crystal structure is undamaged by this soft lithography technique, maintaining electrical conductivity.

Low-cost, “green” transistor heralds advance in flexible electronics

September 24, 2014 10:02 am | News | Comments

As tech company LG demonstrated this summer with the unveiling of its 18-in flexible screen, the next generation of roll-up displays is tantalizingly close. Researchers are now reporting a new, inexpensive and simple way to make transparent, flexible transistors that could help bring roll-up smartphones with see-through displays and other bendable gadgets to consumers in just a few years.

New "dry" process creates artificial membranes on silicon

September 9, 2014 2:42 pm | News | Comments

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.

Materials scientists play atomic Jenga

September 4, 2014 8:07 am | by Dawn Levy, Oak Ridge National Laboratory | News | Comments

Researchers at Oak Ridge National Laboratory got a surprise when they built a highly ordered lattice by layering thin films containing lanthanum, strontium, oxygen and iron. Although each layer had an intrinsically nonpolar distribution of electrical charges, the lattice had an asymmetric distribution of charges.

Bubbling down: Discovery suggests surprising uses for common bubbles

August 20, 2014 8:29 am | by John Sullivan, Office of Engineering Communications, Princeton Univ. | News | Comments

Anyone who has ever had a glass of fizzy soda knows that bubbles can throw tiny particles into the air. But in a finding with wide industrial applications, Princeton Univ. researchers have demonstrated that the bursting bubbles push some particles down into the liquid as well.

New biomaterial coats tricky burn wounds by acting like cling wrap

August 11, 2014 12:33 pm | News | Comments

Wrapping wound dressings around fingers and toes can be tricky, but for burn victims, guarding them against infection is critical. At the National Meeting & Exposition of the American Chemical Society scientists have reported the development of new ultra-thin coatings called nanosheets that can cling to the body's contours and keep bacteria at bay. The super-thin sheets have been tested on mice and could help transform burn treatment.

Diamond defects engineered for quantum computing and subatomic imaging

August 6, 2014 9:54 am | by Catherine Meyers, Univ. of Chicago | News | Comments

By carefully controlling the position of an atomic-scale diamond defect within a volume smaller than what some viruses would fill, researchers have cleared a path toward better quantum computers and nanoscale sensors. These diamond defects are attractive candidates for qubits, the quantum equivalent of a computing bit, and accurate positioning is key to using them to store and transmit information.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading