Advertisement
Thin films
Subscribe to Thin films
View Sample

FREE Email Newsletter

Researchers strain to improve electrical material

February 11, 2013 11:09 am | News | Comments

Like turning coal to diamond, adding pressure to an electrical material enhances its properties. Now, University of Illinois at Urbana-Champaign researchers have devised a method of making ferroelectric thin films with twice the strain, resulting in exceptional performance.

With voltage, “smart” oxide flips from open to closed

February 8, 2013 11:48 am | News | Comments

Researchers have tried for decades to replicate the effects of transistors in transition metal oxides by using a voltage to convert the material from an insulator to a metal, but the induced change only occurs within a few atomic layers of the surface. Recently, however, scientists in Japan have discovered that applying a voltage to a vanadium dioxide film several tens of nanometers thick converts the entire film from an insulator to a metal.

New options for transparent contact electrodes

January 29, 2013 10:29 am | News | Comments

Found in flat screens, solar modules, or in new organic light-emitting diode (LED) displays, transparent electrodes have become ubiquitous. But since raw materials like indium are becoming more and more costly, researchers have begun to look elsewhere for alternatives. A new review article sheds some light on the different advantages and disadvantages of established and new materials for use in these kinds of contact electrodes.

Advertisement

Liquid crystal’s chaotic inner dynamics

January 24, 2013 4:08 pm | News | Comments

Physicists have recently demonstrated that the application of a very strong alternating electric field to thin liquid crystal cells leads to a new distinct nonlinear dynamic effect in the response of the cells. Researchers were able to explain this result through spatio-temporal chaos theory. The finding has implications for the operation of liquid crystal devices because their operation depends on electro-optic switch phenomena.

Sensors from a spray can: Organic materials increase camera sensitivity

January 23, 2013 5:41 pm | News | Comments

Researchers in Germany have developed a new generation of image sensors that are more sensitive to light than the conventional silicon versions. Simple and cheap to produce, they consist of electrically conductive plastics which are sprayed onto the sensor surface in an ultra-thin layer. The chemical composition of the polymer spray coating can be altered so that even the invisible range of the light spectrum can be captured.   

Atomic layer deposition technique improves thermoelectric materials

January 22, 2013 9:49 am | News | Comments

Researchers at the Aalto University School of Chemical Technology have applied atomic layer deposition (ALD) technique to the synthesis of thermoelectric materials. Converting waste energy into electricity, these materials are a promising means of producing energy cost-effectively and without carbon dioxide emissions in the future.

New surfaces repel most known liquids

January 16, 2013 1:18 pm | News | Comments

In an advance toward stain-proof, spill-proof clothing, protective garments and other products that shrug off virtually every liquid—from blood and ketchup to concentrated acids—scientists are reporting development of new "superomniphobic" surfaces. These new surfaces display extreme repellency to two families of liquids: Newtonian and non-Newtonian.

NREL, Stanford team up on peel-and-stick solar cells

January 13, 2013 10:48 pm | News | Comments

It may be possible soon to charge cell phones, change the tint on windows, or power small toys with peel-and-stick versions of solar cells. A partnership between Stanford University and the National Renewable Energy Laboratory aims to produce water-assisted transfer printing technologies that support thin-film solar cell production.

Advertisement

New material harvests energy from water vapor

January 10, 2013 2:50 pm | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have created a new polymer film that can generate electricity by drawing on a ubiquitous source: water vapor. The new material changes its shape after absorbing tiny amounts of evaporated water, allowing it to repeatedly curl up and down. Harnessing this continuous motion could drive robotic limbs or generate enough electricity to power micro- and nanoelectronic devices, such as environmental sensors.

A microwave-assisted method for producing thin films

December 19, 2012 1:53 pm | News | Comments

Growth of new materials is the cornerstone of materials science. At the same time, the energy crisis has brought the spotlight on synthesis and growth of materials for clean energy technologies. However, researchers in these areas do simply grow materials—they assemble the atoms and molecules that form so-called thin films on various substrates, a complex, time-consuming process. Now, a team of engineers is using microwave energy to assemble atoms into thin films and grow them directly onto a substrate at low temperatures.

A low-cost route to ultrathin platinum films

December 13, 2012 8:14 am | News | Comments

A research group at NIST has developed a relatively simple, fast, and effective method of depositing uniform, ultrathin layers of platinum atoms on a surface. The new process exploits an unexpected feature of electrodeposition of platinum—if you drive the reaction much more strongly than usual, a new reaction steps in to shuts down the metal deposition process, allowing an unprecedented level of control of the film thickness.

Tooth “tattoo” sensor may help dentists assess patients' oral health

November 9, 2012 8:58 am | by David Levin, Tufts University | News | Comments

A sensor invented by Tufts University bioengineers, when attached temporarily to a tooth, could one day help dentists fine-tune treatments for patients with chronic periodontitis, for example, or even provide a window on a patient’s overall health. The thin foil-like sensor is built from gold, silk, and graphite, has a built-in antenna to receive power and signals, and is applied directly to a tooth.

Engineers build ultrasensitive photon hunter

November 8, 2012 9:50 am | News | Comments

When it comes to imaging, every single photon counts if there is barely any available light. This is the point where the latest technologies often reach their limits. Researchers have now developed a single photon avalanche photodiode that can read individual photons in just a few picoseconds. The speed allows the image sensor to capture high quality images with very low light levels.

Advertisement

Stronger than a speeding bullet

November 7, 2012 3:13 pm | by David L. Chandler, MIT News Office | News | Comments

New tests of nanostructured material developed by scientists at Rice University and Massachusetts Institute of Technology could lead to better armor against everything from gunfire to micrometeorites. The key, they found, was to use composites made of two or more materials whose stiffness and flexibility are structured in very specific ways—such as in alternating layers just a few nanometers thick.

Researchers make strides toward selective oxidation catalysts

November 5, 2012 11:45 am | News | Comments

Oxide catalysts play an integral role in many chemical transformations. Greener, more efficient chemical processes would benefit greatly from solid oxide catalysts that are choosier about their reactants, but achieving this has prove a challenge. Now, a team of researchers have developed a straightforward and generalizable process for making reactant-selective oxide catalysts by encapsulating the particles in a sieve-like film that blocks unwanted reactants.

Scientists build the first all-carbon solar cell

November 5, 2012 11:16 am | News | Comments

Stanford University scientists have built the first solar cell made entirely of carbon, a promising alternative to the expensive materials used in photovoltaic devices today. Unlike rigid silicon solar panels that adorn many rooftops, Stanford's thin film prototype is made of carbon materials that can be coated from solution.

Complex 3D metallic structures manufactured at the nanoscale

October 18, 2012 11:58 am | News | Comments

By combining ion processing and nanolithography, scientists from Aalto University in Finland and the University of Washington have managed to create complex 3D structures at nanoscale. The breakthrough was made while studying the irregular folding of metallic thin films after they were processed by reactive ion etching. After determining the cause, the researchers realized they could control the bending activity with an ion beam.

Applied physics as art

October 15, 2012 7:52 am | News | Comments

In Harvard University's Pierce Hall, the surface of a small germanium-coated gold sheet shines vividly in crimson. A centimeter to the right, where the same metallic coating is literally only about 20 atoms thicker, the surface is a dark blue, almost black. The colors from the logo of the Harvard School of Engineering and Applied Sciences, where researchers have demonstrated a new way to customize the color of metal surfaces by exploiting an overlooked optical phenomenon.

Researchers find way to prevent cracking in nanoparticle films

October 12, 2012 8:17 am | News | Comments

Making uniform coatings is a common engineering challenge, and, when working at the nanoscale, even the tiniest cracks or defects can be a big problem. New research from University of Pennsylvania engineers has shown a new way of avoiding such cracks when depositing thin films of nanoparticles based on spin-coating.

X-ray diffraction method observes thin films without damaging them

October 10, 2012 5:08 pm | News | Comments

The theoretical and experimental framework of a new coherent diffraction strain imaging approach was recently developed by scientists at IBM and Argonne National Laboratory. The new technique is capable of imaging lattice distortions in thin films nondestructively at spatial resolutions of less than 20 nm using coherent nanofocused hard X-rays.

Experiments reveal dynamics of polymer chains on substrates

September 25, 2012 7:58 am | News | Comments

New technologies in microelectronics and lithography typically require the presence of nanoscale polymer films in contact with a substrate. Successful engineering of these structures requires an understanding of the interplay between the dynamics of the thin film and the underlying substrate, and recent experiments at the Argonne National Laboratory’s Advanced Photon Source have produced new insights into these compositions.

Researchers demonstrate cheaper way to produce NFO thin films

September 24, 2012 7:05 am | News | Comments

Researchers from North Carolina State University and the Georgia Institute of Technology have demonstrated a less-expensive way to create textured nickel ferrite (NFO) ceramic thin films, which can easily be scaled up to address manufacturing needs. NFO is a magnetic material that holds promise for microwave technologies and next-generation memory devices.

Silicon, erbium are built on one chip for the first time

September 24, 2012 4:44 am | News | Comments

Within optical microchips, light finds its way through waveguides made of silicon, and is amplified with the help of other semiconductors, such as gallium arsenide and erbium. But until recent work in The Netherlands, no chip existed on which both silicon and erbium-doped material had been successfully integrated. The new chip now amplifies light up to 170 Gbit/sec.

Research uncovers path to defect-free thin films

September 20, 2012 9:04 am | News | Comments

A team led by Oak Ridge National Laboratory has discovered a strain relaxation phenomenon in cobaltites that has eluded researchers for decades and may lead to advances in fuel cells, magnetic sensors, and a host of energy-related materials. The finding could change the conventional wisdom that accommodating the strain inherent during the formation of epitaxial thin films involves structural defects.

Imec demonstrates electronics that flex and stretch like skin

September 18, 2012 6:12 am | News | Comments

Belgium-based semiconductor manufacturing firm imec announced Tuesday that it has integrated an ultra-thin, flexible chip with bendable and stretchable interconnects into a package that adapts dynamically to curving and bending surfaces. The resulting circuitry can be embedded in medical and lifestyle applications where user comfort and unobtrusiveness is key, such as wearable health monitors or smart clothing.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading