Advertisement
Thin films
Subscribe to Thin films
View Sample

FREE Email Newsletter

Ultra-thin tool heating improves injection molding

January 2, 2014 11:58 am | News | Comments

To manufacture plastic parts with high-end surfaces, the entire forming tool is heated to 110 C using a technique known as variothermic tempering. To retrieve the finished plastic part, the mold must be cooled by up to 30 C, consuming lots of energy. Researchers have now developed a new kind of tempering technique that is up to 90% more energy efficient than variothermic tempering approaches.

Added molecules allow MOFs to conduct electricity

December 5, 2013 3:54 pm | News | Comments

Scientists from NIST and Sandia National Laboratories have added something new to a family of engineered, high-technology materials called metal-organic frameworks (MOFs): the ability to conduct electricity. This breakthrough—conductive MOFs—has the potential to make these already remarkable materials even more useful, particularly for detecting gases and toxic substances.

Characterizing solar cells with nanoscale precision

December 5, 2013 9:23 am | News | Comments

Researchers from the NIST Center for Nanoscale Science and Technology (CNST) have demonstrated a new low-energy electron beam technique and used it to probe the nanoscale electronic properties of grain boundaries and grain interiors in cadmium telluride (CdTe) solar cells. Their results suggest that controlling material properties near the grain boundaries could provide a path for increasing the efficiency of such solar cells.

Advertisement

New way to dissolve semiconductors holds promise for electronics industry

November 13, 2013 10:26 am | News | Comments

Semiconductors, the foundation of modern electronics used in flatscreen televisions and fighter jets, could become even more versatile as researchers make headway on a novel, inexpensive way to turn them into thin films. Their report on a new liquid that can quickly dissolve nine types of key semiconductors appears in the Journal of the American Chemical Society.

Topological insulator breaks symmetry

November 5, 2013 8:19 am | News | Comments

An international team of scientists have discovered a new type of quantum material whose lopsided behavior may lend itself to creating novel electronics. The material is called bismuth tellurochloride, or BiTeCl. It belongs to a class of materials called topological insulators that conduct electrical current with perfect efficiency on their surfaces, but not through their middles.

Field-effect transistors get a boost from ferroelectric films

October 23, 2013 7:42 am | News | Comments

As microelectronics get smaller and smaller, one of the biggest challenges to packing a smartphone or tablet with maximum processing power and memory is the amount of heat generated by the tiny “switches” at the heart of the device.  A complex metal-oxide film could help reduce the voltage required to switch electronic signals, and thus the excessive energy they require. 

A chameleon in the physics lab

October 22, 2013 8:18 am | News | Comments

Active camouflage has taken a step forward at Harvard Univ., with a new coating that intrinsically conceals its own temperature to thermal cameras. In a laboratory test, a team placed the device on a hot plate and watched it through an infrared camera as the temperature rose. Initially, it behaved as expected, giving off more infrared light as the sample was heated.

Major leap towards graphene for solar cells

October 8, 2013 3:33 pm | News | Comments

Researchers at the Helmholtz Zentrum Berlin Institute for Silicon Photovoltaics have shown that graphene retains its impressive set of properties when it is coated with a thin silicon film. These findings have paved the way for entirely new possibilities to use in thin-film photovoltaics. Graphene has extreme conductivity and is completely transparent while being inexpensive and nontoxic.

Advertisement

Mass producing pocket laboratories

October 2, 2013 9:24 am | News | Comments

There is certainly no shortage of lab-on-a-chip devices, but in most cases manufacturers have not yet found a cost-effective way to mass produce them. Scientists are now developing a platform for series production of these pocket laboratories. The first major step is moving away from the usual injection molding or wet chemical processing techniques in favor of roll-to-roll processing.

On the road to fault-tolerant quantum computing

September 17, 2013 7:55 am | News | Comments

An international collaboration at Lawrence Berkeley National Laboratory’s Advanced Light Source has induced high-temperature superconductivity in a toplogical insulator, an important step on the road to fault-tolerant quantum computing.

A durable, bacteria-killing surface for hospitals

August 20, 2013 12:13 pm | News | Comments

Scientists at Switzerland have developed a new method for making antimicrobial surfaces that can eliminate bacteria under a minute. The breakthrough relies on a new sputtering technique that uses a highly ionized plasma to, for the first time, deposit antibacterial titanium oxide and copper films on 3-D polyester surfaces. This promotes the production of free radicals, which are powerful natural bactericides.

The positive sides of doping

August 14, 2013 9:45 am | News | Comments

Flexible thin film solar cells that can be produced by roll-to-roll manufacturing are a highly promising route to cheap solar electricity. Researchers in Switzerland report that they have designed a low-cost cadmium telluride solar cell technology based on metal foil substrates. By doping the cells with cooper, they have elevated efficiency from 8 to 11.5%.

GE takes stake in First Solar; to share technology

August 6, 2013 5:50 pm | by JONATHAN FAHEY - AP Energy Writer - Associated Press | News | Comments

First Solar Inc. said Tuesday that it's buying a competing thin-film solar panel technology from General Electric Co. (GE) in exchange for a stake in the company. First Solar will acquire GE's technology for making thin-film panels. In return, GE will receive 1.75 million shares of First Solar stock, about 2% of First Solar's outstanding shares.

Advertisement

Lifelike cooling for sunbaked windows

July 30, 2013 12:07 pm | News | Comments

Sun-drenched rooms make for happy residents, but large glass windows also bring higher air-conditioning bills. Now a bioinspired microfluidic circulatory system for windows developed by researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University could save energy and cut cooling costs dramatically—while letting in just as much sunlight.

New technology prevents degradation of silicon PV modules

July 23, 2013 8:23 am | News | Comments

Diffusion of sodium ions from the glass substrate is thought to be the primary cause of potential-induced degradation (PID) in crystalline silicon photovoltaic cells. A research institute and metals company in Japan have partnered to develop a thin film solution. The titanium oxide-based composite metal compound they have developed is inexpensive to produce and highly scalable.

Graphene “onion rings” have delicious potential

July 22, 2013 9:07 am | by Mike Williams, Rice Univ. | News | Comments

Concentric hexagons of graphene grown in a furnace at Rice University represent the first time anyone has synthesized graphene nanoribbons on metal from the bottom up—atom by atom. As seen under a microscope, the layers brought onions to mind. Though flat graphene could never be like an onion, the name stuck.

Engineer achieves milestone in nanomanufacturing

July 18, 2013 9:29 am | by Lori Keesey, NASA's Goddard Space Flight Center | News | Comments

A team led by John Hagopian, an optics engineer at NASA’s Goddard Space Flight Center, has recently demonstrated that it can grow a uniform layer of carbon nanotubes through the use of atomic layer deposition. The marriage of the two technologies now means that NASA can grow nanotubes on 3-D components, such as complex baffles and tubes commonly used in optical instruments.

Veeco receives 2013 R&D 100 Award

July 10, 2013 11:21 am | News | Comments

Veeco Instruments Inc. has been recognized by R&D Magazine with a 2013 R&D 100 Award for its SPECTOR-HT Ion Beam Deposition System. The SPECTOR-HT is used to create precision thin-film coatings for the optical market for applications such as laser machining, telecommunications, manufacturing of laser diodes, heads-up displays and laser guidance systems.

AKHAN Technologies, Argonne win prestigious 2013 R&D 100 Award

July 9, 2013 12:01 pm | News | Comments

AKHAN Technologies Inc. announced that its Miraj Diamond Platform, developed in collaboration with Argonne National Laboratory, has received a 2013 R&D 100 Award. The Miraj Diamond Platform (CMOS compatible N-type nanocrystalline diamond thin-film technology), represents the combination of two recently enabled diamond technologies—low-temperature nanocrystalline diamond deposition technology and an efficient n-type doping process.

Bringing color to solar façades

July 2, 2013 12:21 pm | News | Comments

Designers of buildings typically have no choice but to use black or bluish-gray colored solar panels. With the help of thin-film technologies, however, researchers in Germany have now added color to solar cells. Optics specialists have changed physical thickness of the transparent conductive oxide layer, modifying its refractive index.

Surprising turns in magnetic thin films could lead to better data storage

June 18, 2013 7:19 am | by David L. Chandler, MIT News Office | News | Comments

A magnetic phenomenon newly discovered by Massachusetts Institute of Technology researchers could lead to much faster, denser and more energy-efficient chips for memory and computation. The findings could reduce the energy needed to store and retrieve one bit of data by a factor of 10,000.

Imec and Holst Centre unveil fully organic imager

June 12, 2013 9:37 am | News | Comments

At this week’s International Image Sensor Workshop in Utah, Belgium’s imec and Holst Centre, in collaboration with Philips Research, will present a large-area fully-organic photodetector array fabricated on a flexible substrate. The imager is sensitive in the wavelength range suitable for x-ray imaging applications.

Simple wavelength detector could speed data communications

June 5, 2013 7:40 am | News | Comments

Researchers at SLAC National Accelerator Laboratory and Stanford Univ. have created a new device, smaller than a grain of rice, that could streamline optical data communications. It can directly identify the wavelength of light that hits it, and should scale down to the even tinier dimensions needed for multichannel optical data receivers on future generations of computer chips.

Printing innovations provide ten-fold improvement in organic electronics

June 3, 2013 8:06 am | News | Comments

SLAC National Accelerator Laboratory and Stanford Univ. researchers have developed a new printing process for organic thin-film electronics that results in films of strikingly higher quality. The printing process called FLUENCE—fluid-enhanced crystal engineering—results in thin films capable of conducting electricity 10 times more efficiently than those created using conventional methods.

Are carbon nanotubes capable of "superfast" water transport?

May 28, 2013 9:08 am | by Peter Rüegg, ETH Zurich | News | Comments

Materials developers have had high hopes for using carbon nanotubes to desalinate seawater. However, a simulation recently conducted in Europe reveals that the ultra-fast transport rates required to accomplish this task have not been correctly measured in carbon nanotubes. These new findings suggest the use of a carbon nanotube membranes as a filter medium rather a transport mechanism might be more realistic.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading