Advertisement
Thin films
Subscribe to Thin films
View Sample

FREE Email Newsletter

Bringing color to solar façades

July 2, 2013 12:21 pm | News | Comments

Designers of buildings typically have no choice but to use black or bluish-gray colored solar panels. With the help of thin-film technologies, however, researchers in Germany have now added color to solar cells. Optics specialists have changed physical thickness of the transparent conductive oxide layer, modifying its refractive index.

Surprising turns in magnetic thin films could lead to better data storage

June 18, 2013 7:19 am | by David L. Chandler, MIT News Office | News | Comments

A magnetic phenomenon newly discovered by Massachusetts Institute of Technology researchers could lead to much faster, denser and more energy-efficient chips for memory and computation. The findings could reduce the energy needed to store and retrieve one bit of data by a factor of 10,000.

Imec and Holst Centre unveil fully organic imager

June 12, 2013 9:37 am | News | Comments

At this week’s International Image Sensor Workshop in Utah, Belgium’s imec and Holst Centre, in collaboration with Philips Research, will present a large-area fully-organic photodetector array fabricated on a flexible substrate. The imager is sensitive in the wavelength range suitable for x-ray imaging applications.

Advertisement

Simple wavelength detector could speed data communications

June 5, 2013 7:40 am | News | Comments

Researchers at SLAC National Accelerator Laboratory and Stanford Univ. have created a new device, smaller than a grain of rice, that could streamline optical data communications. It can directly identify the wavelength of light that hits it, and should scale down to the even tinier dimensions needed for multichannel optical data receivers on future generations of computer chips.

Printing innovations provide ten-fold improvement in organic electronics

June 3, 2013 8:06 am | News | Comments

SLAC National Accelerator Laboratory and Stanford Univ. researchers have developed a new printing process for organic thin-film electronics that results in films of strikingly higher quality. The printing process called FLUENCE—fluid-enhanced crystal engineering—results in thin films capable of conducting electricity 10 times more efficiently than those created using conventional methods.

Are carbon nanotubes capable of "superfast" water transport?

May 28, 2013 9:08 am | by Peter Rüegg, ETH Zurich | News | Comments

Materials developers have had high hopes for using carbon nanotubes to desalinate seawater. However, a simulation recently conducted in Europe reveals that the ultra-fast transport rates required to accomplish this task have not been correctly measured in carbon nanotubes. These new findings suggest the use of a carbon nanotube membranes as a filter medium rather a transport mechanism might be more realistic.

Engineer helps pioneer flat spray-on optical lens

May 23, 2013 2:10 pm | News | Comments

A University of British Columbia engineer and a team of U.S. researchers have made a breakthrough utilizing spray-on technology that could revolutionize the way optical lenses are made and used. Nearly all lenses—whether in an eye, a camera, or a microscope—are presently curved, which limits the aperture, or amount of light that enters. The new spray-on lens is flat, and can be affixed to a glass slide.

New technique may open new era of atomic-scale semiconductor devices

May 22, 2013 8:08 am | News | Comments

Researchers at North Carolina State University have developed a new technique for creating high-quality semiconductor thin films at the atomic scale—meaning the films are only one atom thick. The technique can be used to create these thin films on a large scale, sufficient to coat wafers that are two inches wide, or larger.

Advertisement

Moth-inspired nanostructures take the color out of thin films

May 16, 2013 7:48 am | News | Comments

Inspired by the structure of moth eyes, researchers at North Carolina State University have developed nanostructures that limit reflection at the interfaces where two thin films meet, suppressing the “thin-film interference” phenomenon commonly observed in nature. This can potentially improve the efficiency of thin-film solar cells and other optoelectronic devices.

New insight into early growth of solid thin-films

May 14, 2013 10:07 am | News | Comments

Thin films sometimes grow layer by layer, each layer one atom thick, while in other cases atoms deposited onto a surface form 3D islands that grow, impinge, and coalesce into a continuous film. Scientists have traditionally assumed that the islands are homogeneous and coalesce at roughly the same time. In a recent study, researchers have discovered that the process is more dynamic than suggested by the traditional view.

Imaging nanoscale polarization in ferroelectrics with coherent X-rays

May 7, 2013 11:19 am | News | Comments

An international team working to image ferroelectric thin films have reported the development of a new X-ray imaging technique, coherent X-ray Bragg projection ptychography. Under certain conditions, these thin films, which are used in computer memory, form networks of nanoscale domains with distinct local polarizations that are normally difficult to image.

Scientists discover 3D magnetic vortices

May 7, 2013 11:15 am | News | Comments

Magnetic vortices typically occur in nanometer-scale magnetic disks, which are studied for their potential roles in wireless data transmission. So far, magnetic vortex states have been observed only within a plane, but recently researchers in Europe have discovered 3D magnetic vortices for the first time in a specially designed stack of magnetic disks.

Nanoparticles give major enhancement to polymer solar cells

May 7, 2013 11:11 am | News | Comments

A polymer thin film solar cell (PSC) produces electricity from sunlight by the photovoltaic effect. Though light and inexpensive, PSCs currently suffer from a lack of enough efficiency for large scale applications and they also have stability problems. Researches in Korea have designed and added multi-positional silica-coated silver nanoparticles that have greatly improved stability and performance of these cells.

Advertisement

Ultrathin transistors spread like butter on toast

April 18, 2013 8:37 am | by Anne Ju, Cornell University | News | Comments

Like spreading a thin layer of butter on toast, Cornell University scientists have helped develop a novel process of spreading extremely thin organic transistors, and used synchrotron X-rays to watch how the films crystallize. The coating procedure, called solution shearing, is like the buttering of a slice of toast.

Nanoengineered plastic film is the future of 3D on-the-go

April 2, 2013 12:40 pm | News | Comments

Ditch the 3D glasses. Thanks to a simple plastic filter, mobile device users can now view unprecedented, distortion-free, brilliant 3D content with the naked eye. This latest innovation from researchers in Singapore is the first ever glasses-free 3D accessory that can display content in both portrait and landscape mode, and measures less than 0.1 mm in thickness.

Inorganic materials display massive swelling and shrinkage

April 1, 2013 8:15 pm | News | Comments

There is high interest in methods to produce 2D crystals by exfoliating materials with layered structures, but certain ions or solvents can infiltrate materials with layered structures, forcing exfoliation spontaneously and complicating efforts to build practical materials. While working to develop these procedures, researchers in Japan have reported an unusual phenomenon that layered materials undergo drastic swelling without breaking into separate 2D crystal layers.

Chemical vapor sensors built with new monolayer materials

April 1, 2013 1:33 pm | News | Comments

Scientists at the U.S. Naval Research Laboratory have fabricated a vapor sensor using a single monolayer of molybdenum disulfide (MoS2) on a silicon dioxide wafer. They show that it functions effectively as a chemical vapor sensor, exhibiting highly selective reactivity to a range of analytes, and providing sensitive transduction of transient surface physisorption events to the conductance of the monolayer channel.

Watching fluid flow at nanometer scales

April 1, 2013 7:34 am | by David L. Chandler, MIT News Office | News | Comments

Imagine if you could drink a glass of water just by inserting a solid wire into it and sucking on it as though it were a soda straw. It turns out that if you were tiny enough, that method would work just fine—and wouldn’t even require the suction to start. New research has demonstrated, for the first time, that when inserted into a pool of liquid, nanowires naturally draw the liquid upward in a thin film that coats the surface of the wire.

Hybrid ribbons a gift for powerful batteries

March 25, 2013 12:21 pm | by Mike Williams, Rice University | News | Comments

According to recent research at Rice University, vanadium oxide and graphene may be a key new set of materials for improving lithium-ion storage. Ribbons created at Rice from these two materials are thousands of times thinner than a sheet of paper, yet have potential that far outweighs current materials for their ability to charge and discharge very quickly. Initial capacity remains at 90% or more after more than 1,000 cycles.

Paint-on plastic electronics

March 25, 2013 7:51 am | News | Comments

Semiconducting polymers are an unruly bunch, but University of Michigan engineers have developed a new method for getting them in line that could pave the way for cheaper, greener, "paint-on" plastic electronics.

Device may lead to quicker, more efficient diagnostics

March 13, 2013 12:18 pm | News | Comments

A current optical-sensing technology can launch and guide a single light wave, called a surface-plasmon-polariton (SPP) wave, that travels along the flat interface of the sample to be analyzed. However, only one wave can be used, allowing the analysis of just one substance. Researchers at Penn State University have designed a thin film that can create additional channels for the SPP waves. 

Riddle solved: How two unlikely materials are held together

March 11, 2013 9:38 am | News | Comments

For years, researchers have developed thin films of bismuth telluride, which converts heat into electricity or electricity to cooling, on top of gallium arsenide to create cooling devices for electronics. But it was not clear how this could be done because the atomic structures do not appear to be compatible. Researchers from North Carolina State University and RTI International have now solved the mystery.

New spectroscopy technique could improve optical devices

March 5, 2013 2:10 pm | News | Comments

A multi-university research team has used a new spectroscopic method—energy-momentum spectroscopy—to gain a key insight into how light is emitted from layered nanomaterials and other thin films. The technique lets researchers understand the source and orientation of light in light-emitting thin films and could lead to better LEDs, solar cells, and other devices that use layered nanomaterials.

New surface coating cuts through the fog

March 5, 2013 9:08 am | by David L. Chandler, MIT News Office | News | Comments

Until recently, there has been no systematic way of evaluating how different anti-fog coatings perform under real-world conditions. A team of MIT researchers has developed such a testing method, and used it to find a coating that outperforms others not only in preventing foggy buildups, but also in maintaining good optical properties without distortion.

Nanotubes generate huge electric currents from osmotic flow

March 4, 2013 7:44 am | by Thorsten Naeser, Max-Planck-Institute of Quantum Optics | News | Comments

The salinity difference between freshwater and saltwater could be a source of renewable energy. However, power yields from existing techniques are not high enough to make them viable. A team led by physicists in France has discovered a new means of harnessing this energy. Their method of osmotic flow through boron nitride nanotubes generates electric currents with 1,000 times the efficiency of any previous system.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading