Advertisement
Thin films
Subscribe to Thin films
View Sample

FREE Email Newsletter

Graphene-copper sandwich may improve, shrink electronics

March 12, 2014 2:00 pm | by Sean Nealon, Univ. of Riverside, Calif. | News | Comments

Researchers have discovered that creating a graphene-copper-graphene “sandwich” strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

Material rivaling graphene may one day be mined from rocks

March 12, 2014 1:52 pm | News | Comments

Will one-atom-thick layers of molybdenum disulfide, a compound that occurs naturally in rocks, prove to be better than graphene for electronic applications? Recent research into phenomena occurring in the crystal network of this material show signs that might prove to be the case. But physicists in Poland have shown that the nature of the phenomena occurring in layered materials are still ill-understood.

First thin films of spin ice reveal cold secrets

March 12, 2014 8:25 am | News | Comments

Thin films of spin ice have been shown to demonstrate surprising properties which could help in the development of applications of magnetricity, the magnetic equivalent of electricity. Researchers based at the London Centre for Nanotechnology, in collaboration with scientists from Oxford and Cambridge, found that, against expectations, the Third Law of Thermodynamics could be restored in thin films of the magnetic material spin ice.

Advertisement

Imec achieves record 8.4% efficiency in fullerene-free organic solar cells

March 11, 2014 9:50 am | News | Comments

Organic solar cells are a compelling thin-film photovoltaic technology in part because of their compatibility with flexible substrates and tunable absorption window. Belgium-based chipmaker imec has set a new conversion efficiency record of 8.4% for this type of cell by developing fullerene-free acceptor materials and a new multilayer semiconductor device structure.

Atomically thin solar cells

March 10, 2014 12:56 pm | News | Comments

Graphene is not the only ultrathin material that exhibits special electronic properties. Ultrathin layers made of tungsten and selenium have recently been created in Austria that show a high internal efficiency when used to gather sunlight. More than 95% of light passes straight through, but a tenth of what is stopped is converted to electricity.

Scientists create optical nanocavity to improve light absorption in semiconductors

March 7, 2014 1:14 pm | News | Comments

Experts from the Univ. of Buffalo (UB), helped by colleagues from two Chinese universities, have developed an optical "nanocavity" that could help increase the amount of light absorbed by ultrathin semiconductors. The advancement could lead to the creation of more powerful photovoltaic cells and improvements in video cameras and even hydrogen fuel, as the technology could aid the splitting of water using energy from light.

Researchers develop intrinsically unstacked double-layer graphene

March 4, 2014 3:35 pm | News | Comments

The huge surface area and strong interactions between graphene layers causes facile “stacking” behavior that dramatically reduces available surface area, inhibiting graphene electronic properties. Researchers have tried to prevent this with carbon black, but this also carries undesirable property changes. By introducing protuberances on graphene during synthesis, researchers in China have found a solution to the stacking problem.

Researchers create coating material to prevent blood clots associated with implants

February 28, 2014 10:42 am | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

A team of researchers has developed a material that could help prevent blood clots associated with catheters, heart valves, vascular grafts and other implanted biomedical devices. Blood clots at or near implanted devices are thought to occur when the flow of nitric oxide, a naturally occurring clot-preventing agent generated in the blood vessels, is cut off. When this occurs, the devices can fail.

Advertisement

Researchers develop ultrathin perfect ultraviolet light absorber

February 27, 2014 12:00 pm | News | Comments

Ultraviolet light (UV) has not only harmful effects on molecules and biological tissue like human skin but it also can impair the performance of organic solar cells upon long-term exposure. Researchers in Germany have now developed a so-called plasmonic metamaterial which is compatible with solar technology and completely absorbs UV light despite being only 20 nm thin.

Superabsorbing design may lower manufacturing cost of thin-film solar cells

February 26, 2014 7:42 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a superabsorbing design that may significantly improve the light absorption efficiency of thin-film solar cells and drive down manufacturing costs. The superabsorbing design could decrease the thickness of the semiconductor materials used in thin-film solar cells by more than one order of magnitude without compromising the capability of solar light absorption.

An electrical switch for magnetism

January 31, 2014 11:13 am | News | Comments

Only a few elements in the periodic table are inherently magnetic, but scientists have recently discovered that gold, silver, platinum, palladium and other transition metals demonstrate magnetic behavior when formed into nanometer-scale structures. Scientists at the RIKEN Center for Emergent Matter Science have now shown that this nanoscale magnetism in thin films of platinum can be controlled using an externally applied electric field.

Solar cell technology captures high-energy photons more efficiently

January 24, 2014 8:38 am | News | Comments

Getting the blues is rarely a desirable experience—unless you’re a solar cell, that is. Scientists at Argonne National Laboratory and the Univ. of Texas at Austin have together developed a new, inexpensive material that has the potential to capture and convert solar energy—particularly from the bluer part of the spectrum—much more efficiently than ever before.

From a carpet of nanorods to a thin film solar cell absorber within seconds

January 22, 2014 11:14 am | News | Comments

Researchers in Ireland and Germany have discovered a novel solid state reaction which lets kesterite grains grow within a few seconds and at relatively low temperatures. The work points towards a new pathway for the fabrication of thin microcrystalline semiconductor films without the need of expensive vacuum technology.

Advertisement

Understanding perovskite-based solar cells

January 22, 2014 9:18 am | News | Comments

In only a few years, the efficiency of perovskite-based solar cells has increased from 3% to more than 16%. However, a detailed explanation of the mechanisms of operation within this photovoltaic system is still lacking. in recent work, scientists have now uncovered the mechanism by which these novel light-absorbing semiconductors transfer electrons along their surface.

Atomic-scale catalysts may produce cheap hydrogen

January 22, 2014 8:13 am | News | Comments

Researchers at North Carolina State Univ. have shown that a one-atom thick film of molybdenum sulfide (MoS2) may work as an effective catalyst for creating hydrogen. The work opens a new door for the production of cheap hydrogen. Hydrogen holds great promise as an energy source, but the production of hydrogen from water electrolysis currently relies in large part on the use of expensive platinum catalysts.

Inverse opal structure improves thin-film solar cells

January 13, 2014 3:59 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers have shown how to increase the efficiency of thin-film solar cells, a technology that could bring low-cost solar energy. The approach uses 3-D photonic crystals to absorb more sunlight than conventional thin-film cells. The synthetic crystals possess a structure called an inverse opal to make use of and enhance properties found in the gemstones to reflect, diffract and bend incoming sunlight.

Battery development may extend range of electric cars

January 10, 2014 7:59 am | News | Comments

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical hurdles. Now, a novel design for a critical part of the battery has been shown to significantly extend the technology's lifespan, bringing it closer to commercial use.

Engineers make world’s fastest organic transistor

January 9, 2014 7:23 am | News | Comments

For years engineers the world over have been trying to use inexpensive, carbon-rich molecules and plastics to create organic semiconductors. Two university research teams have worked together to produce the world’s fastest thin-film organic transistors, proving that this experimental technology has the potential to achieve the performance needed for high-resolution television screens and similar electronic devices.

Eye-catching electronics

January 8, 2014 2:03 pm | by Peter Rüegg, ETH Zürich | News | Comments

Researchers in Switzerland are developing electronic components that are thinner and more flexible than before. They can even be wrapped around a single hair without damaging the electronics. This opens up new possibilities for ultra-thin, transparent sensors that are literally easy on the eye.

Nano-inspired packaging plastic protects as well as aluminium foil

January 6, 2014 12:06 pm | News | Comments

A spin-off company from Singapore’s A*STAR research institute, has invented a new plastic film using a nano-inspired process that makes the material thinner but as effective as aluminium foil in keeping air and moisture at bay. The stretchable plastic could be an alternative for prolonging shelf-life of pharmaceuticals, food, and electronics, bridging the gap of aluminium foil and transparent oxide films.

Ultra-thin tool heating improves injection molding

January 2, 2014 11:58 am | News | Comments

To manufacture plastic parts with high-end surfaces, the entire forming tool is heated to 110 C using a technique known as variothermic tempering. To retrieve the finished plastic part, the mold must be cooled by up to 30 C, consuming lots of energy. Researchers have now developed a new kind of tempering technique that is up to 90% more energy efficient than variothermic tempering approaches.

Added molecules allow MOFs to conduct electricity

December 5, 2013 3:54 pm | News | Comments

Scientists from NIST and Sandia National Laboratories have added something new to a family of engineered, high-technology materials called metal-organic frameworks (MOFs): the ability to conduct electricity. This breakthrough—conductive MOFs—has the potential to make these already remarkable materials even more useful, particularly for detecting gases and toxic substances.

Characterizing solar cells with nanoscale precision

December 5, 2013 9:23 am | News | Comments

Researchers from the NIST Center for Nanoscale Science and Technology (CNST) have demonstrated a new low-energy electron beam technique and used it to probe the nanoscale electronic properties of grain boundaries and grain interiors in cadmium telluride (CdTe) solar cells. Their results suggest that controlling material properties near the grain boundaries could provide a path for increasing the efficiency of such solar cells.

New way to dissolve semiconductors holds promise for electronics industry

November 13, 2013 10:26 am | News | Comments

Semiconductors, the foundation of modern electronics used in flatscreen televisions and fighter jets, could become even more versatile as researchers make headway on a novel, inexpensive way to turn them into thin films. Their report on a new liquid that can quickly dissolve nine types of key semiconductors appears in the Journal of the American Chemical Society.

Topological insulator breaks symmetry

November 5, 2013 8:19 am | News | Comments

An international team of scientists have discovered a new type of quantum material whose lopsided behavior may lend itself to creating novel electronics. The material is called bismuth tellurochloride, or BiTeCl. It belongs to a class of materials called topological insulators that conduct electrical current with perfect efficiency on their surfaces, but not through their middles.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading