Advertisement
Thin films
Subscribe to Thin films
View Sample

FREE Email Newsletter

Researchers in Korea greatly improve piezoelectric nanogenerator efficiency

May 15, 2014 12:51 pm | News | Comments

Scientists at the Korea Advanced Institute of Science and Technology have increased the energy efficiency of a piezoelectric nanogenerator by almost 40 times, moving it closer to commercial flexible energy harvesters that can supply power infinitely to wearable, implantable electronic devices. The technique used to make this improvement, laser lift-off, allows the placement of a high-quality piezoelectric film on a sapphire substrate.

X-rays, computer simulations reveal crystal growth

May 15, 2014 9:08 am | by Anne Ju, Cornell Univ. | News | Comments

A research team that figured out how to coat an organic material as a thin film wanted a closer look at why their spreadable organic semiconductor grew like it did. So Cornell Univ. scientists used their high-energy synchrotron x-ray source to show how these organic molecules formed crystal lattices at the nanoscale. These high-speed movies could help advance the technology move from the laboratory to mass production.

Strongly interacting electrons in wacky oxide synchronize to work like the brain

May 14, 2014 2:01 pm | by Walt Mills, Penn State Univ. | News | Comments

Vanadium dioxide is called a "wacky oxide" because it transitions between a conducting metal and an insulating semiconductor and with the addition of heat or electrical current. A device created by Penn State engineers uses a thin film of vanadium oxide on a titanium dioxide substrate to create an oscillating switch that could form the basis of a computational device that uses a fraction of the energy necessary for today’s computers.

Advertisement

Advance brings “hyperbolic metamaterials” closer to reality

May 12, 2014 3:21 pm | News | Comments

Optical metamaterials harness clouds of electrons called surface plasmons to manipulate and control light. However, plasmonic devices often use gold or silver, which is incompatible with CMOS manufacturing processes. Purdue Univ. scientists have now developed an ultra-thin crystalline superlattice that instead uses metal-dielectrics. Applied using epitaxy, this “hyperbolic” film could greatly expand applications for metamaterials.

Energy device for flexible electronics packs a lot of power

May 7, 2014 9:28 am | News | Comments

While flexible gadgets such as “electronic skin” and roll-up touch screens are moving ever closer to reality, their would-be power sources are either too wimpy or too stiff. But that’s changing fast. Scientists have developed a new device that’s far thinner than paper, can flex and bend, and store enough energy to provide critical back-up power for portable electronics.

Engineers develop basis for electronics that stretch at the molecular level

May 5, 2014 11:37 am | News | Comments

Current approaches to flexible electronics, in which very thin semiconductor materials are applied to a thin, flexible substrate in wavy patterns and then applied to a deformable surface such as skin or fabric, are still built around hard composite materials that limit their elasticity. Researchers in California have made several discoveries, however, that could lead to electronics that are "molecularly stretchable."

New fluorescent hybrid material changes color according to light direction

April 30, 2014 2:39 pm | News | Comments

Researchers in Spain have developed a highly fluorescent hybrid material that changes color depending on the polarization of the light that it is illuminated by. They achieved this with a perfect fit between an inorganic nanostructure and dye molecules.

New production method for transparent conductive films is eco-friendly

April 29, 2014 11:40 am | News | Comments

Transparent conductive (TCO) films, present in tablets, laptops, flat screens and solar cells, are now an integral part of our lives. Yet they are expensive and complex to manufacture. Researchers in Europe have recently succeeded in developing a method of producing TCO films that relies on molecular self-organization. The technique is cheaper, simpler and more environmentally friendly than the traditional sputtering approach.

Advertisement

Atomic switcheroo explains origins of thin-film solar cell mystery

April 24, 2014 7:55 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Treating cadmium-telluride (CdTe) solar cell materials with cadmium-chloride improves their efficiency, but researchers have not fully understood why. Now, an atomic-scale examination of the thin-film solar cells led by Oak Ridge National Laboratory has answered this decades-long debate about the materials’ photovoltaic efficiency increase after treatment.

SUNY college may partner with Solar Frontier on thin-film R&D, production

April 23, 2014 9:33 am | News | Comments

Solar Frontier and the State Univ. of New York College of Nanoscale Science and Engineering have signed a memorandum of understanding to conduct a technical and economic feasibility study for potential joint R&D and manufacturing of CIS thin-film modules in Buffalo, New York. This move is part of Solar Frontier’s plans to establish production bases for its proprietary technology outside of Japan, the company’s home market.

Ion collision physics change drastically for ultra-thin films

April 22, 2014 11:27 am | News | Comments

A bullet fired through a block of wood will slow down. In a similar way, ions are decelerated when they pass through a solid material: the thicker the material, the larger the energy loss will be. However, as recent experiments in Austria have shown, this picture breaks down in ultra-thin target materials, which only consist of a few layers of atoms.

New material coating technology mimics nature’s Lotus effect

April 22, 2014 8:34 am | News | Comments

Of late, engineers have been paying more and more attention to nature’s efficiencies, such as the Lotus effect, which describes the way the Lotus plant uses hydrophobic surfaces to survive in muddy swamps. A researcher at Virginia Tech has developed a simpler two-step application process to create a superhydrophobic copper surface that leverages the Lotus effect.

Scientists produce thinnest feasible membrane

April 18, 2014 3:10 pm | by Fabio Bergamin, ETH Zurich | News | Comments

Researchers have produced a stable porous membrane that is thinner than a single nanometer. The membrane consists of two layers of graphene on which have been etched tiny pores of a precisely defined size. Extremely light and breathable, the new material could help enable a new generation of ultra-rapid filters or functional waterproof clothing.

Advertisement

“Exotic” material is like a switch when super thin

April 18, 2014 3:05 pm | by Anne Ju, Cornell Univ. | News | Comments

Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides. Researchers from Cornell Univ. and Brookhaven National Laboratory have shown how to switch a particular transition metal oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick.

Breakthrough atomic-level observation uses super-resolution microscope

April 17, 2014 9:46 am | News | Comments

A research group in Japan has developed a new advanced system that combines a super-resolution microscope and a deposition chamber for growing oxide thin films. With this system, they successfully observed for the first time the growing of metal-oxide thin films at an atomic level on the surface of single-crystal strontium titanate.

Making new materials an atomic layer at a time

April 17, 2014 9:36 am | News | Comments

Researchers in Pennsylvania and Texas have shown the ability to grow high quality, single-layer materials one on top of the other using chemical vapor deposition. This highly scalable technique, often used in the semiconductor industry, can produce materials with unique properties that could be applied to solar cells, ultracapacitors for energy storage, or advanced transistors for energy efficient electronics, among many other applications.

New findings to help extend high efficiency solar cells’ lifetime

April 7, 2014 1:27 pm | by Kathleen Estes, Okinawa Institute of Science and Technology | News | Comments

Solid-state dye-sensitized solar cells have shown their potential in achieving high efficiency with a low cost of fabrication. Degradation of these cells shortens lifespan dramatically, however, and the causes of this are not well understood. After a detailed analysis, researchers in Okinawa have determined which material in the cells was degrading, and why.

Study: Perovskite solar cells can double as lasers

March 28, 2014 10:50 am | News | Comments

New research on perovskite-based solar cells pioneered in the U.K. suggests that they can double up as a laser as well as photovoltaic device. By sandwiching a thin layer of the lead halide perovskite between two mirrors, the Univ. of Cambridge team produced an optically driven laser which proves these cells “show very efficient luminescence”, with up to 70% of absorbed light re-emitted.

Science with “bling”

March 28, 2014 8:49 am | by Manuel Gnida, SLAC National Accelerator Laboratory | News | Comments

A research team led by SLAC National Accelerator Laboratory scientists has uncovered a potential new route to produce thin diamond films for a variety of industrial applications, from cutting tools to electronic devices to electrochemical sensors. The scientists added a few layers of graphene to a metal support and exposed the topmost layer to hydrogen.

Ultra-thin light detectors combine two very different technologies

March 27, 2014 9:36 am | News | Comments

Until now, it has been hard to couple light generation into layered semiconductor systems. Scientists in Austria have recently solved this problem using metamaterials, which are able to manipulate light in the terahertz range due to their special microscopic structure. This represents the first combination of metamaterials and quantum cascade structures.  

Thermoelectric capacity doubled with new thin film material

March 26, 2014 9:24 am | News | Comments

Because of their unique qualities, thermoelectric materials can convert waste heat into electricity. Researchers in the Netherlands have managed to significantly improve the efficiency of a common thermoelectric material by adjusting the fabrication conditions. The material may eventually be used to, for example, put the heat issued from a factory chimney or car exhaust pipe to good use.

Scientists discover material that can be solar cell by day, light panel by night

March 25, 2014 7:49 am | News | Comments

In what was almost a chance discovery, researchers in Singapore have developed a solar cell material which can emit light in addition to converting light to electricity. This solar cell is developed from perovskite, a promising material that could hold the key to creating high-efficiency, inexpensive solar cells. The new cells not only glow when electricity passes through them, they can also be customized to emit different colours.

World’s first light-activated antimicrobial surface also works in the dark

March 24, 2014 3:46 pm | News | Comments

Researchers in the U.K. have developed a new antibacterial material which has potential for cutting hospital acquired infections. The combination of two simple dyes with nanoscopic particles of gold is deadly to bacteria when activated by light, even under modest indoor lighting. And in a first for this type of substance, it also shows impressive antibacterial properties in total darkness.

Materials experts create spintronic thermoelectric power generators

March 21, 2014 2:18 pm | News | Comments

Imagine a computer so efficient that it can recycle its own waste heat to produce electricity. While such an idea may seem far-fetched today, significant progress has already been made to realize these devices. Researchers at the Univ. of Utah have fabricated spintronics-based thin film devices which do just that, converting even minute waste heat into useful electricity.

Scientists discover potential way to make graphene superconducting

March 20, 2014 8:02 am | News | Comments

Researchers in California have used a beam of intense ultraviolet light to look deep into the electronic structure of a material made of alternating layers of graphene and calcium. While it's been known for nearly a decade that this combined material is superconducting, the new study offers the first compelling evidence that the graphene layers are instrumental in this process. The finding could lead to super-efficient nanoelectronics.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading