Advertisement
Thermoelectrics
Subscribe to Thermoelectrics

The Lead

Surprising material could play role in saving energy

April 18, 2014 7:56 am | by Megan Fellman, Northwestern Univ. | News | Comments

One strategy for addressing the world’s energy crisis is to stop wasting so much energy when producing and using it, which can happen in coal-fired power plants or transportation. Nearly two-thirds of energy input is lost as waste heat. Now Northwestern Univ. scientists have discovered a surprising material that is the best in the world at converting waste heat to useful electricity.

Thermoelectric capacity doubled with new thin film material

March 26, 2014 9:24 am | News | Comments

Because of their unique qualities, thermoelectric...

Materials experts create spintronic thermoelectric power generators

March 21, 2014 2:18 pm | News | Comments

Imagine a computer so efficient that it can...

Nanopillars could improve conversion of heat to electricity

February 21, 2014 7:36 am | News | Comments

Univ. of Colorado Boulder scientists have found a creative way to radically improve...

View Sample

FREE Email Newsletter

Comprehensive phonon “map” offers direction for engineering new thermoelectric devices

January 9, 2014 7:48 am | News | Comments

To understand how to design better thermoelectric materials, researchers are using neutron scattering at the Spallation Neutron Source and the High Flux Isotope Reactor at Oak Ridge National Laboratory to study how silver antimony telluride is able to effectively prevent heat from propagating through it on the microscopic level.

Phonons may block sound, channel heat with unprecedented precision

November 13, 2013 1:48 pm | News | Comments

The phonon, like the photon or electron, is a physical particle that travels like waves, representing mechanical vibration. Phonons transmit everyday sound and heat. Recent progress in phononics by a research scientist at Georgia Institute of Technology has led to the development of new ideas and devices that are using phononic properties to control sound and heat, even to the point of freeing bustling city blocks from the noise of traffic.

Scientist use heat to make magnets

October 21, 2013 2:19 pm | News | Comments

Researchers have recently provided the first evidence ever that it is possible to generate a magnetic field by using heat instead of electricity. The phenomenon is referred to as the Magnetic Seebeck effect or “thermomagnetism”.

Advertisement

X-rays give a push to Moore’s Law

August 26, 2013 12:05 pm | News | Comments

In recent years, thermoelectric materials have enabled the re-use of otherwise wasted thermal energy as electrical power. But this ability is limited to materials, typically complex crystals, exhibiting high electrical conductivity and low thermal conductivity. Scientists have now discovered a way of suppressing thermal conductivity in sodium cobaltate, opening new paths for energy scavenging.

Rattling ions limit heat flow in materials

August 26, 2013 8:09 am | News | Comments

A new study published in Nature Materials has found a way to suppress the thermal conductivity in sodium cobaltate so that it can be used to harvest waste energy. Led by scientists at Royal Holloway Univ., the team conducted a series of experiments on crystals of sodium cobaltate grown in the University's Dept. of Physics.

Composite thermoelectric outperforms constituent materials

May 6, 2013 1:05 pm | News | Comments

A team led by Lawrence Berkeley National Laboratory Materials Sciences Division’s Jeffrey Urban and Rachel Segalman have discovered highly conductive polymer behavior occurring at a polymer/nanocrystal interface. The composite organic/inorganic material is a thermoelectric—a material capable of converting heat into electricity—and has a higher performance than either of its constituent materials.

Improving materials that convert heat to electricity and vice-versa

May 6, 2013 7:50 am | News | Comments

Thermoelectric materials can be used to turn waste heat into electricity or to provide refrigeration without any liquid coolants, and a research team from the University of Michigan has found a way to nearly double the efficiency of a particular class of them that's made with organic semiconductors.

Riddle solved: How two unlikely materials are held together

March 11, 2013 9:38 am | News | Comments

For years, researchers have developed thin films of bismuth telluride, which converts heat into electricity or electricity to cooling, on top of gallium arsenide to create cooling devices for electronics. But it was not clear how this could be done because the atomic structures do not appear to be compatible. Researchers from North Carolina State University and RTI International have now solved the mystery.

Advertisement

“Invisible” particles could enhance thermoelectric devices

February 6, 2013 8:15 am | by David L. Chandler, MIT News Office | News | Comments

Thermoelectric efficiency has improved enough to enable limited commercial use, but lack of better materials has prevented widespread adoption. New development work at Massachusetts Institute of Technology could help reduce thermal conductivity while keeping electrical conductivity high. In addition to computer modeling, the researchers draw upon methods developed by optics researchers who have been attempting to create invisibility cloaks—ways of making objects invisible to certain radio waves or light waves using nanostructured materials that bend light.

Atomic layer deposition technique improves thermoelectric materials

January 22, 2013 9:49 am | News | Comments

Researchers at the Aalto University School of Chemical Technology have applied atomic layer deposition (ALD) technique to the synthesis of thermoelectric materials. Converting waste energy into electricity, these materials are a promising means of producing energy cost-effectively and without carbon dioxide emissions in the future.

New thermoelectric material is as easy as dirt, heat, pressure

November 27, 2012 3:53 pm | News | Comments

By using common materials found pretty much anywhere there is dirt, a team of Michigan State University researchers have developed a new thermoelectric material. The new material mimic natural minerals known as tetrahedrites and can be processed economically by grinding them to a powder, then using pressure and heat to compress them into useable sizes.

Controlling heat flow through a nanostructure

November 16, 2012 8:29 am | by David L. Chandler, MIT News Office | News | Comments

Thermoelectric devices, which can harness temperature difference to produce electricity, might be made more efficient thanks to new research from Massachusetts Institute of Technology on heat propagation through structures called superlattices. The new findings show, unexpectedly, that heat can travel like waves, rather than particles, through these nanostructures.

Thermoelectric material is world's best at converting heat waste to electricity

September 19, 2012 10:21 am | News | Comments

Northwestern University scientists have developed a thermoelectric material that is, according to the university, the best in the world at converting waste heat to electricity, which is good news once one realizes nearly two-thirds of energy input is lost as waste heat. The material could signify a paradigm shift.

Advertisement

New material mimics graphene

April 24, 2012 3:39 am | by David L. Chandler, MIT News Office | News | Comments

Graphene, a single-atom-thick layer of carbon, has spawned much research into its unique electronic, optical, and mechanical properties. Now, researchers at Massachusetts Institute of Technology have found another compound that shares many of graphene's unusual characteristics—and in some cases has interesting complementary properties to this much-heralded material.

Nanocrystal-coated fibers might reduce wasted energy

April 18, 2012 5:17 am | by Emil Venere | News | Comments

Engineers at Purdue University have coated glass fibers with a new thermoelectric material formed by dipping glass fibers in a solution containing nanocrystals of lead telluride and then exposing them to heat in a process called annealing to fuse the crystals together. The resulting material is far less brittle and more effiicient to produce than conventional thermoelectrics.

Liquid-like materials may pave way for new thermoelectric devices

March 22, 2012 4:06 am | News | Comments

In the continual quest for better thermoelectric materials—which convert heat into electricity and vice versa—researchers have identified a liquid-like compound whose properties give it the potential to be even more efficient than traditional thermoelectrics.

Liquid-like copper ion material aids conversion of heat to electricity

March 13, 2012 4:32 am | News | Comments

Scientists from the Chinese Academy of Science's Shanghai Institute of Ceramics, in collaboration with scientists from Brookhaven National Laboratory, the University of Michigan, and the California Institute of Technology, have identified a new class of high-performance thermoelectric materials. In their study, liquid-like copper ions carry electric current around a solid selenium crystal lattice.

‘Power Felt’ creates electricity from heat—or cold

February 22, 2012 6:17 am | by Katie Neal | News | Comments

Made from carbon nanotubes locked up in flexible plastic fibers and made to feel like fabric, an invention called Power Felt from Wake Forest University uses temperature differences—room temperature versus body temperature, for example—to create a charge.

Turning heat into power

February 3, 2012 2:36 am | by David L. Chandler, MIT News Office | News | Comments

A team of Massachusetts Institute of Technology researchers has developed a way of making a high-temperature version of a kind of materials called photonic crystals, using metals such as tungsten or tantalum. The new materials—which can operate at temperatures up to 1,200 C—could find a wide variety of applications powering portable electronic devices, spacecraft to probe deep space, and new infrared light emitters that could be used as chemical detectors and sensors.

Thermal breakthrough could cool computer chips and lasers

December 14, 2011 6:19 pm | by David Salisbury | News | Comments

The surprising discovery of a new way to tune and enhance thermal conductivity—a basic property generally considered to be fixed for a given material—could give engineers a new tool for managing thermal effects in smart phones and computers, lasers, and a number of other powered devices.

Elemental 'cookbook' guides efficient thermoelectric combinations

December 14, 2011 5:40 pm | News | Comments

A repository developed by Duke University engineers that they call a "materials genome" could allow scientists to stop using trail-and-error methods for combining electricity-producing materials. The thermoelectrics database project covers thousands of compounds, and provides detailed "recipes" for creating most efficient combinations for a particular purpose.

A new approach to solar power

October 21, 2011 3:42 am | by David L. Chandler, MIT News Office | News | Comments

Systems to harness the sun's energy typically generate either electricity or heat in the form of steam or hot water. But a new analysis by researchers at the Massachusetts Institute of Technology shows that there could be significant advantages to systems that produce both electricity and heat simultaneously.

Graphene shows unusual thermoelectric response to light

October 7, 2011 12:30 pm | by David L. Chandler, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers have found that shining light on a sheet of graphene, treated so that it had two regions with different electrical properties, creates a temperature difference that, in turn, generates a current. Previously, this effect had been thought to be photovoltaic in nature.

Wanted: 2011's Top Technologies

August 15, 2011 6:12 am | Blogs | Comments

The editors of R&D Magazine have opened the nominations for the 2012 R&D 100 Awards competition, which will celebrate the 50th anniversary of the awards. If your organization introduced a new product this year, or is planning to, you can begin the entry process now.

Explaining the dynamics behind the best thermoelectric materials

June 7, 2011 4:27 am | by Bill Cabage | News | Comments

Neutron analysis of the atomic dynamics behind thermal conductivity is helping scientists at the Department of Energy's Oak Ridge National Laboratory gain a deeper understanding of how thermoelectric materials work. The analysis could spur the development of a broader range of products with the capability to transform heat to electricity.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading