Advertisement
Superconductors
Subscribe to Superconductors

The Lead

New law for superconductors

December 16, 2014 2:47 pm | by Larry Hardesty, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers have discovered a new mathematical relationship—between material thickness, temperature and electrical resistance—that appears to hold in all superconductors. The result could shed light on the nature of superconductivity and could also lead to better-engineered superconducting circuits for applications like quantum computing and ultra-low-power computing.

Rattled atoms mimic high-temperature superconductivity

December 8, 2014 9:29 am | by SLAC Office of Communications | News | Comments

An experiment at SLAC National Accelerator Laboratory provided the first fleeting glimpse of the...

Unusual electronic state found in new class of superconductors

December 8, 2014 7:41 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

A team of scientists has discovered an unusual form of electronic order in a new family of...

Study explains atomic action in high-temperature superconductors

November 13, 2014 7:43 am | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

A study at the SLAC National Accelerator Laboratory suggests for the first time how scientists...

View Sample

FREE Email Newsletter

Computational model predicts superconductivity

November 1, 2014 11:34 am | by Katie Elyce Jones, Oak Ridge National Laboratory | News | Comments

Researchers studying iron-based superconductors are combining novel electronic structure algorithms with the high-performance computing power of the U.S. Dept. of Energy’s Titan supercomputer at Oak Ridge National Laboratory to predict spin dynamics, or the ways electrons orient and correlate their spins in a material.

New evidence for exotic, predicted superconducting state

October 27, 2014 12:35 pm | News | Comments

A research team led by a Brown Univ. physicist has produced new evidence for an exotic superconducting state, first predicted a half-century ago, that can arise when a superconductor is exposed to a strong magnetic field. This new understanding of what happens when electron spin populations become unequal could have implications beyond superconductivity.

Puzzling new behavior found in high-temperature superconductors

October 21, 2014 9:11 am | by SLAC Office of Communications | News | Comments

Research by an international team of scientists has uncovered a new, unpredicted behavior in a copper oxide material that becomes superconducting at relatively high temperatures. This new phenomenon presents a challenge to scientists seeking to understand its origin and connection with high-temperature superconductivity. Their ultimate goal is to design a superconducting material that works at room temperature.

Advertisement

Superconducting circuits, simplified

October 17, 2014 7:49 am | by Larry Hardesty, MIT News Office | News | Comments

Computer chips with superconducting circuits would be 50 to 100 times as energy efficient as today’s chips, an attractive trait given the increasing power consumption of the massive data centers that power Internet sites. Superconducting chips also promise greater processing power: Superconducting circuits that use so-called Josephson junctions have been clocked at 770 GHz, or 500 times the speed of the chip in the iPhone 6.

Unstoppable magnetoresistance

October 14, 2014 9:20 am | by Tien Nguyen, Brookhaven National Laboratory | News | Comments

Mazhar Ali, a fifth-year graduate student in the laboratory of Bob Cava, the Russell Wellman Moore Professor of Chemistry at Princeton Univ., has spent his academic career discovering new superconductors, materials coveted for their ability to let electrons flow without resistance. While testing his latest candidate, the semimetal tungsten ditelluride (WTe2), he noticed a peculiar result.

A quick look at electron-boson coupling

October 7, 2014 8:56 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Imagine being able to tune the properties of a solid material just by flashing pulses of light on it. That is one potential payoff of electrons and atoms interacting with ultrashort pulses of light. The technology of ultrafast spectroscopy is a key to understanding this phenomenon and now a new wrinkle to that technology, observations of electron self-energy, has been introduced by Lawrence Berkeley National Laboratory researchers.

Searching for new forms of superconductivity in 2-D electron liquids

September 10, 2014 8:38 am | News | Comments

A new frontier for studying 2-D matter is provided by planar collections of electrons at the surface of transition-metal-oxide (TMO) materials, in which high electron densities give rise to interactions that are stronger than in semiconductors. Scientists hope to find exotic phenomena in these highly-interactive electron environments and one of the leaders in this effort is James Williams, a new fellow at the Joint Quantum Institute.

Titania-based material holds promise as new insulator

September 4, 2014 9:50 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Research from North Carolina State Univ. shows that a type of modified titania, or titanium dioxide, holds promise as an electrical insulator for superconducting magnets, allowing heat to dissipate while preserving the electrical paths along which current flows. Superconducting magnets are being investigated for use in next-generation power generating technologies and medical devices.

Advertisement

Sprinkling spin physics onto a superconductor

September 2, 2014 12:03 pm | by E. Edwards, Joint Quantum Institute | News | Comments

Physicists studying the effects of embedding magnetic spins onto the surface of a superconductor recently report that the spins can interact differently than previously thought. This hybrid platform could be useful for quantum simulations of complex spin systems, having the special feature that the interactions may be controllable, something quite unusual for most condensed matter systems.

Clues uncovered to role of magnetism in iron-based superconductors

August 22, 2014 7:57 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

New measurements of atomic-scale magnetic behavior in iron-based superconductors by researchers at Oak Ridge National Laboratory and Vanderbilt Univ. are challenging conventional wisdom about superconductivity and magnetism. The study provides experimental evidence that local magnetic fluctuations can influence the performance of iron-based superconductors, which transmit electric current without resistance at relatively high temperatures.

Moore quantum materials: Recipe for serendipity

August 18, 2014 7:44 am | by Mike Williams, Rice Univ. | News | Comments

Thanks to a $1.5 million innovation award from the Gordon and Betty Moore Foundation, Rice Univ. physicist Emilia Morosan is embarking on a five-year quest to cook up a few unique compounds that have never been synthesized or explored. Morosan is no ordinary cook; her pantry includes metals, oxides and sulfides, and her recipes produce superconductors and exotic magnets.

The atomic picture of magnetism

August 5, 2014 10:05 pm | News | Comments

The search for zero-resistance conductors that can operate at realistic temperatures has been frustrated by the inability to understand high-temperature superconductors, particularly their magnetic structure. Researchers have done this at the atomic scale for the first time with a so-called strongly correlated electron system of iron telluride. Previously, magnetic information was provided by neutron diffraction, which is imprecise.

Physicists unlock nature of high-temperature superconductivity

July 28, 2014 4:14 pm | by Jeanne Galatzer-Levy, Univ. of Illinois, Chicago | News | Comments

Physicists have identified the “quantum glue” that underlies a promising type of superconductivity—a crucial step towards the creation of energy superhighways that conduct electricity without current loss. The research, published online in the Proceedings of the National Academy of Sciences, is a collaboration between the Univ. of Illinois at Chicago,  Cornell Univ. and Brookhaven National Laboratory.

Advertisement

Super-strong superconducting magnet achieves world record current

July 25, 2014 4:38 pm | News | Comments

Using a new type of large-scale magnet conductor, scientists in Japan have recently achieved an electrical current of 100,000 A, a world record. The conductor, which was built using yttrium-based high-temperature superconducting tapes for high mechanical strength, is a prototype for using in a future fusion reactor.

Highway for ultracold atoms in light crystals

July 9, 2014 2:10 pm | News | Comments

When a superconductor is exposed to a magnetic field, a surface current creates a magnetic field that cancels the field inside the superconductor. This phenomenon, known as the Meissner-Ochsenfeld effect, was first observed in 1933. In a research first, scientists have succeeded in measuring an analogue of the Meissner effect in an optical crystal with ultracold atoms. This validates theoretical predictions dating back more than 20 years.

Study helps unlock mystery of high-temp superconductors

July 1, 2014 10:20 am | News | Comments

Using a scanning tunneling microscope to visualize the electronic structure of the oxygen sites within a superconductor, a Binghamton Univ. physicist and his colleagues say they have unlocked one key mystery surrounding high-temperature superconductivity. The team found a density wave with a d-orbital structure, which is a pattern new to this type of superconductor and they may be found in all cuprates.

Physicists explain counterintuitive phenomenon in superconductivity

June 30, 2014 8:54 am | by Julie Cohen, UC Santa Barbara | News | Comments

For his doctoral dissertation, Yu Chen developed a novel way to fabricate superconducting nanocircuitry. However, the extremely small zinc nanowires he designed did some unexpected things, including demonstrating dissipation characteristics though only to be present in normal states. After long and careful work, which involved both experimental and theoretical efforts, researchers have found an explanation that fits.

World’s first magnetic hose created

June 25, 2014 11:01 am | News | Comments

An international research team led by scientists in Barcelona has developed a material which guides and transports a magnetic field from one location to the other, similar to how an optical fiber transports light or a hose transports water. The magnetic hose consists of a ferromagnetic cylinder covered by a superconductor material, a surprisingly simple design made possible by complicated theoretical calculations and experimentation.

Superconducting secrets solved after 30 years

June 16, 2014 9:14 am | News | Comments

A breakthrough has been made in identifying the origin of superconductivity in high-temperature superconductors, which has puzzled researchers for the past three decades. Researchers in the U.K. have found that ripples of electrons, known as charge density waves or charge order, create twisted ‘pockets’ of electrons in these materials, from which superconductivity emerges.

Quantum criticality observed in new class of materials

June 5, 2014 7:45 am | News | Comments

Quantum criticality, the strange electronic state that may be intimately related to high-temperature superconductivity, is notoriously difficult to study. But a new discovery of “quantum critical points” could allow physicists to develop a classification scheme for quantum criticality—the first step toward a broader explanation.

Quantum criticality observed in new class of materials

June 4, 2014 2:39 pm | by Jade Boyd, Rice Univ. | News | Comments

Quantum criticality, the strange electronic state that may be intimately related to high-temperature superconductivity, is notoriously difficult to study. But a new discovery of “quantum critical points” could allow physicists to develop a classification scheme for quantum criticality, the first step toward a broader explanation.

Insights into the stages of high-temperature superconductivity

May 28, 2014 8:39 am | News | Comments

An international team of researchers from the USA and Japan, including Takao Sasagawa at Tokyo Institute of Technology, have uncovered a two-stage transition in lanthanum-strontium-copper-oxide high-temperature superconductors (LSCOs), leading to the first complex phase diagram of the behavior of LSCOs. This research could improve understanding of high-temperature superconductivity under magnetic fields.

Scientists discover new magnetic phase in iron-based superconductors

May 23, 2014 8:16 am | News | Comments

Scientists at the U.S. Dept. of Energy’s Argonne National Laboratory have discovered a previously unknown phase in a class of superconductors called iron arsenides. This sheds light on a debate over the interactions between atoms and electrons that are responsible for their unusual superconductivity.

Paper examines clues for superconductivity in an iron-based material

May 5, 2014 10:12 am | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

For the first time, scientists have a clearer understanding of how to control the appearance of a superconducting phase in a material, adding crucial fundamental knowledge and perhaps setting the stage for advances in the field of superconductivity. The paper focuses on a calcium-iron-arsenide single crystal, which has structural, thermodynamic and transport properties that can be varied through carefully controlled synthesis.

Superconducting qubit array points the way to quantum computers

April 24, 2014 7:46 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

A fully functional quantum computer is one of the holy grails of physics. Unlike conventional computers, the quantum version uses qubits (quantum bits), which make direct use of the multiple states of quantum phenomena. When realized, a quantum computer will be millions of times more powerful at certain computations than today’s supercomputers.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading