Advertisement
Semiconductors
Subscribe to Semiconductors
View Sample

FREE Email Newsletter

Physicists discover “quantum droplet” in semiconductor

February 26, 2014 3:25 pm | News | Comments

JILA physicists used an ultrafast laser and help from German theorists to discover a new semiconductor quasiparticle, a handful of smaller particles that briefly condense into a liquid-like droplet. Quasiparticles are composites of smaller particles that can be created inside solid materials and act together in a predictable way.

A cavity that you want

February 25, 2014 4:53 pm | by Cory Nealon, Univ. of Buffalo | News | Comments

Associated with unhappy visits to the dentist, “cavity” means something else in the science of optics. An arrangement of mirrors that allows beams of light to circulate in closed paths, or cavities, help us build laser and optical fibers. Now, a research team pushed the concept further by developing an optical “nanocavity” that boosts the amount of light that ultrathin semiconductors absorb.

Possible explanation for light-degradation silicon solar cells

February 13, 2014 10:19 am | by Ralf Butscher, Helmholtz Center | News | Comments

An undesired effect in thin film amorphous silicon solar cells has puzzled the scientific community for the last 40 years. This effect, known as light-induced degradation, is responsible for reducing solar cell efficiency over time. Researchers in Germany have recently demonstrated that tiny voids within the silicon network are partly responsible for 10 to 15% efficiency loss as soon as they are used.

Advertisement

3-D-stacked hybrid SRAM cell to be built by European scientists

February 7, 2014 9:49 am | News | Comments

European scientists from both academia and industry have begun an ambitious new research project focused on an alternative approach to extend Moore's Law. The research project, coordinated IBM Research in Zurich and called COMPOSE³, is based on the use of new materials to replace today's silicon, and on taking an innovative design approach where transistors are stacked vertically, known as 3-D stacking.

Scientists produce first ever atom-by-atom simulation of ALD nanoscale film growth

February 5, 2014 1:18 pm | News | Comments

Researchers at Tyndall National Institute in Ireland have produced the first ever atom-by-atom simulation of nanoscale film growth by atomic layer deposition (ALD), a thin-film technology used in the production of silicon chips. The accomplishment required the acquisition of the complete set of hundreds of ALD reactions at the quantum mechanical level.

Staying cool in the nanoelectric universe by getting hot

January 22, 2014 11:40 am | by Cory Nealon, Univ. at Buffalo | News | Comments

New research hints that nanodevices in microcircuits can protect themselves from heat generation through the transformation of nanotransistors into quantum states. The finding, demonstrated in nanoscale semiconductors devices, could boost computing power without large-scale changes to electronics.

Making silicon devices responsive to infrared light

January 2, 2014 7:59 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have tried a variety of methods to develop detectors that are responsive to a broad range of infrared light, but these methods have all faced limitations. Now, a new system developed by researchers at five institutions could eliminate many of those limitations. The new system works at room temperature and provides a broad infrared response.

ORNL devises recipe to fine-tune diameter of silica rods

December 16, 2013 3:22 pm | News | Comments

The goal of fabricating fixed-size one-dimensional silica structures and being able to precisely control the diameter during growth has long eluded scientists. Now, Oak Ridge National Laboratory researchers Panos Datskos and Jaswinder Sharma have demonstrated what they describe as the addressable local control of diameter of each segment of the silica rod.

Advertisement

Tables turn as nature imitates art

December 11, 2013 1:50 pm | by Angela Herring, Northeastern Univ. | News | Comments

There are exam­ples of art imi­tating nature all around us, from Monet to Chihuly, but when physicist Latika Menon peered under the elec­tron micro­scope last fall, she dis­cov­ered the exact oppo­site in gallium nitride nanowires that bore an uncanny resemblance to artistic pots found in her native India. Menon has begun to control these shapes, which will make the nanowires sig­nif­i­cantly more promising for use in advanced devices.

Pressure transforms a semiconductor into a new state of matter

December 11, 2013 7:40 am | News | Comments

By applying pressure to a semiconductor, researchers have been able to transform a semiconductor into a “topological insulator” (TI), an intriguing state of matter in which a material’s interior is insulating but its surfaces or edges are conducting with unique electrical properties. This is the first time that researchers have used pressure to gradually “tune” a material into the TI state.

Squeezing transistors really hard generates energy savings

December 6, 2013 9:47 am | News | Comments

Transistors, the workhorses of the electronics world, are plagued by leakage current. This results in unnecessary energy losses, which is why smartphones and laptops, for example, have to be recharged so often. Researchers have recently shown that this leakage current can be radically reduced by “squeezing” the transistor with a piezoelectric material. Using this approach, they have surpassed the theoretical limit for leakage current.

Flashes of brilliance

November 25, 2013 11:17 am | News | Comments

Spontaneous bursts of light from a solid block illuminate the unusual way interacting quantum particles behave when they are driven far from equilibrium. The discovery by Rice Univ. scientists of a way to trigger these flashes may lead to new telecommunications equipment and other devices that transmit signals at picosecond speeds.

New milestone could help magnets end era of computer transistors

November 20, 2013 9:48 am | by Sarah Yang, Univ. of California, Berkeley | News | Comments

New work by researchers at Univ. of California, Berkeley could soon transform the building blocks of modern electronics by making nanomagnetic switches a viable replacement for the conventional transistors found in all computers.

Advertisement

Scientists create low-cost, long-lasting water splitter from silicon and nickel

November 15, 2013 11:10 am | by Mark Shwartz, Stanford Univ. | News | Comments

Stanford Univ. researchers have developed an inexpensive device that uses light to split water into oxygen and clean-burning hydrogen. The goal is to supplement solar cells with hydrogen-powered fuel cells that can generate electricity when the sun isn't shining or demand is high.

Nanomagnets arise at 2-D boundaries

November 14, 2013 8:10 am | News | Comments

When you squeeze atoms, you don’t get atom juice. You get magnets. According to a new theory by Rice Univ. scientists, imperfections in certain 2-D materials create the conditions by which nanoscale magnetic fields arise. Calculations by the laboratory of Rice theoretical physicist Boris Yakobson show these imperfections, called grain boundaries, in 2-D semiconducting materials known as dichalcogenides can be magnetic.

New way to dissolve semiconductors holds promise for electronics industry

November 13, 2013 10:26 am | News | Comments

Semiconductors, the foundation of modern electronics used in flatscreen televisions and fighter jets, could become even more versatile as researchers make headway on a novel, inexpensive way to turn them into thin films. Their report on a new liquid that can quickly dissolve nine types of key semiconductors appears in the Journal of the American Chemical Society.

Team demonstrates new paradigm for solar cell construction

November 12, 2013 8:53 am | News | Comments

Researchers from the Univ. of Pennsylvania and Drexel Univ. have experimentally demonstrated a new method for solar cell construction which may ultimately make them less expensive, easier to manufacture and more efficient at harvesting energy from the sun. The breakthrough, which is the result of five years of focused research, relies on specifically designed perovskite crystals that deliver a “bulk” photovoltaic effect.

Cooling when there's too much heat

November 11, 2013 2:18 pm | by Nancy W. Stauffer, MIT Energy Initiative | News | Comments

When an earthquake and tsunami struck Japan’s Fukushima nuclear power plant in 2011, crews sprayed cooling seawater on the reactors, but to no avail. One possible reason: Droplets can’t land on surfaces that hot and instantly begin to evaporate, forming a thin layer of vapor and then bouncing along it. Now, MIT researchers have come up with a way to cool hot surfaces more effectively by keeping droplets from bouncing.

Defective nanotubes turned into light emitters

October 31, 2013 11:36 am | News | Comments

Researchers in Basque country in Spain have developed and patented a new source of light emitter based on boron nitride nanotubes. Suitable for developing high-efficiency optoelectronic devices, the structural defects in the nanotubes help make it extremely efficient in ultraviolet light emission.

Researchers make strides toward a copper oxide solar cell

October 31, 2013 7:53 am | News | Comments

Amit Goyal and his team of research scientists are using copper oxide to redesign the face of solar power. The once-dismissed solar semiconductor, one of the first discovered, is the basis of ongoing research at Oak Ridge National Laboratory, where scientists are creating cheaper and safer alternatives for solar conducting technology.

SRC launches synthetic biology research effort at six universities

October 24, 2013 9:04 am | News | Comments

Semiconductor Research Corporation (SRC) has launched a new research program on hybrid bio-semiconductor systems that they hope will provide insights and opportunities for future information and communication technologies. The Semiconductor Synthetic Biology (SSB) program will initially fund research at six universities.

Ultraviolet light to the extreme

October 7, 2013 1:52 am | News | Comments

When a tiny droplet of liquid tin is heated with a laser, plasma forms on the surface of the droplet and produces extreme ultraviolet (EUV) light, which has a higher frequency and greater energy than normal ultraviolet. Now, for the first time, researchers have mapped this EUV emission and developed a theoretical model that explains how the emission depends on the 3-D shape of the plasma.

Wagon-wheel pasta shape for better LED

September 30, 2013 7:51 am | News | Comments

One problem in developing more efficient OLED light bulbs and displays for televisions and phones is that much of the light is polarized in one direction and thus trapped within the LED. Univ. of Utah physicists believe they have solved the problem by creating a new organic molecule that is shaped like rotelle—wagon-wheel pasta—rather than spaghetti.

With carbon nanotubes, a path to flexible, low-cost sensors

September 25, 2013 12:59 pm | News | Comments

Researchers in Germany are showing the way toward low-cost, industrial-scale manufacturing of a new family of electronic devices. Gas sensors that could be integrated into food packaging to gauge freshness, new types of solar cells and flexible transistors, and sensors that could be built into electronic skin: All can be made with carbon nanotubes, sprayed like ink onto flexible plastic sheets or other substrates.

Scientists publish theory, formula to improve plastic semiconductors

September 24, 2013 8:34 am | News | Comments

Anyone who’s stuffed a smartphone in their back pocket would appreciate the convenience of electronic devices that could bend. Alas, electronic components are generally made from stiff and brittle metals and inorganic semiconductors. Now, researchers have created the first theoretical framework seeking to understand, predict and improve the conductivity of semiconducting polymers.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading