Advertisement
Semiconductors
Subscribe to Semiconductors
View Sample

FREE Email Newsletter

New IBM memory card combines flash with phase-change materials

May 7, 2014 2:27 pm | by Chris Sciacca, IBM Research - Zurich | News | Comments

First proposed for memory in the 1970s, phase-change materials exhibit two metastable states which can store data when placed between two electrically conducting electrodes. IBM researchers in Zurich have recently used them as part of Project Theseus to develop a PCI-e card that melds flash memory with phase-change memory. The major improvement in speed interests IBM for Big Data applications.

Engineers develop basis for electronics that stretch at the molecular level

May 5, 2014 11:37 am | News | Comments

Current approaches to flexible electronics, in which very thin semiconductor materials are applied to a thin, flexible substrate in wavy patterns and then applied to a deformable surface such as skin or fabric, are still built around hard composite materials that limit their elasticity. Researchers in California have made several discoveries, however, that could lead to electronics that are "molecularly stretchable."

Probing dopant distribution

May 5, 2014 7:45 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

The icing on the cake for semiconductor nanocrystals that provide a non-damped optoelectronic effect may exist as a layer of tin that segregates near the surface. One method of altering the electrical properties of a semiconductor is by introducing impurities called dopants. A team of researchers has demonstrated that equally important as the amount of dopant is how the dopant is distributed on the surface and throughout the material.

Advertisement

Edgy look at 2-D molybdenum disulfide

May 2, 2014 7:50 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The drive to develop ultra-small and ultra-fast electronic devices using a single atomic layer of semiconductors, such as transition metal dichalcogenides, has received a significant boost. Researchers with Lawrence Berkeley National Laboratory have recorded the first observations of a strong nonlinear optical resonance along the edges of a single layer of molybdenum disulfide.

New material for flat semiconductors

April 30, 2014 7:49 am | by David L. Chandler, MIT News Office | News | Comments

Researchers around the world have been working to harness the unusual properties of graphene, a 2-D sheet of carbon atoms. But graphene lacks one important characteristic that would make it even more useful: a property called a bandgap, which is essential for making devices such as computer chips and solar cells.

The magic of molybdenite: solar cells and light-emitting diodes

April 28, 2014 7:30 am | by Sarah Perrin | News | Comments

Molybdenite has been instrumental in research at the Federal Institute of Technology in Switzerland (EPFL), where scientists have used it to develop a computer chip, flash memory device and a photographic sensor. Now, they have again tapped into the electronic potential of MoS2 by creating diodes that can emit light or absorb it to produce electricity.

Information storage for the next generation of plastic computers

April 17, 2014 9:41 am | by Gary Galluzzo, Univ. of Iowa | News | Comments

Although it is relatively cheap and easy to encode information in light for fiber optic transmission, storing information is most efficiently done using magnetism, which ensures information will survive for years without any additional power. But a new proposal by researchers would replace silicon used in these devices with plastic. Their solution converts magnetic information to light in a flexible plastic device.

Research finds “tunable” semiconductors will allow better detectors, solar cells

April 14, 2014 12:53 pm | by Ann Claycombe, Georgia State Univ. | News | Comments

One of the great problems in physics is the detection of electromagnetic radiation—that is, light—which lies outside the small range of wavelengths that the human eye can see. Think x-rays, for example, or radio waves. Now, researchers have discovered a way to use existing semiconductors to detect a far wider range of light than is now possible, well into the infrared range.

Advertisement

Scalable CVD process for making 2-D molybdenum diselenide

April 8, 2014 11:04 am | News | Comments

Nanoengineering researchers at Rice Univ. and Nanyang Technological Univ. in Singapore have unveiled a potentially scalable method for making one-atom-thick layers of molybdenum diselenide—a highly sought semiconductor that is similar to graphene but has better properties for making certain electronic devices like switchable transistors and light-emitting diodes.

New level of control gained for promising class of semiconductor

April 1, 2014 3:33 pm | News | Comments

Germanium monosulfide (GeS) is emerging as one of the most important class "IV–VI" semiconductor materials with potential in optoelectronics applications for telecommunications and computing. Adding a new element of control to preparation of this material, researchers in China have found a convenient way to selectively prepare GeS nanostructures, including nanosheets and nanowires, that are more active than their bulk counterparts

Flipping the switch on magnetism in strontium titanate

March 31, 2014 8:09 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

Interest in oxide-based semiconductor electronics has exploded in recent years, fueled largely by the ability to grow atomically precise layers of various oxide materials. One of the most important materials in this burgeoning field is strontium titanate, a nominally nonmagnetic wide-bandgap semiconductor, and researchers have found a way to magnetize this material using light, an effect that persists for hours at a time.

Ultra-thin light detectors combine two very different technologies

March 27, 2014 9:36 am | News | Comments

Until now, it has been hard to couple light generation into layered semiconductor systems. Scientists in Austria have recently solved this problem using metamaterials, which are able to manipulate light in the terahertz range due to their special microscopic structure. This represents the first combination of metamaterials and quantum cascade structures.  

Source-gated transistor could pave the way for flexible gadgets

March 25, 2014 1:06 pm | News | Comments

Existing transistors act as electronic switches, altering current flow through a semiconductor by controlling the bias voltage across the channel region. A new electronic component, called a source-gated transistor, has been developed in the U.K. and exploits physical effects such as the Schottky barriers at metal-semiconductor contacts. This innovation could improve the reliability of future digital circuits used within flexible gadgets.

Advertisement

New semiconductor holds promise for 2-D physics, electronics

March 21, 2014 7:54 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

From super-lubricants, to solar cells, to the fledgling technology of valleytronics, there is much to be excited about with the discovery of a unique new 2-D semiconductor, rhenium disulfide, by researchers at Lawrence Berkeley National Laboratory’s Molecular Foundry. Rhenium disulfide, unlike molybdenum disulfide and other dichalcogenides, behaves electronically as if it were a 2-D monolayer even as a 3-D bulk material.

New technique makes LEDs brighter, more resilient

March 19, 2014 8:24 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a new processing technique that makes light-emitting diodes (LEDs) brighter and more resilient by coating the semiconductor material gallium nitride (GaN) with a layer of phosphorus-derived acid.

Surface characteristics influence cellular growth on semiconductor material

March 12, 2014 10:03 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Changing the texture and surface characteristics of a semiconductor material at the nanoscale can influence the way that neural cells grow on the material. The finding stems from a study performed by researchers at North Carolina State Univ., the Univ. of North Carolina at Chapel Hill and Purdue Univ., and may have utility for developing future neural implants.

Imec achieves record 8.4% efficiency in fullerene-free organic solar cells

March 11, 2014 9:50 am | News | Comments

Organic solar cells are a compelling thin-film photovoltaic technology in part because of their compatibility with flexible substrates and tunable absorption window. Belgium-based chipmaker imec has set a new conversion efficiency record of 8.4% for this type of cell by developing fullerene-free acceptor materials and a new multilayer semiconductor device structure.

New hybrid material promising for solar fuels

March 9, 2014 11:42 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A new study by Berkeley Lab researchers shows that nearly 90% of the electrons generated by a hybrid material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules. Interfacing the semiconductor gallium phosphide with a cobaloxime catalyst provides an inexpensive photocathode for bionic leaves that produce energy-dense fuels from nothing more than sunlight, water and carbon dioxide.

Scientists create optical nanocavity to improve light absorption in semiconductors

March 7, 2014 1:14 pm | News | Comments

Experts from the Univ. of Buffalo (UB), helped by colleagues from two Chinese universities, have developed an optical "nanocavity" that could help increase the amount of light absorbed by ultrathin semiconductors. The advancement could lead to the creation of more powerful photovoltaic cells and improvements in video cameras and even hydrogen fuel, as the technology could aid the splitting of water using energy from light.

LED lamps: Less energy, more light with gallium nitride

March 7, 2014 12:55 pm | News | Comments

Light-emitting diodes (LEDs) are durable and save energy. Now, researchers have found a way to make LED lamps even more compact while supplying more light than commercially available models. The key to this advance are a new type of transistors made of the semiconductor material gallium nitride.

Physics in 3-D? That's nothing. Try 0-D

March 4, 2014 10:43 am | by Tom Robinette, Univ. of Cincinnati | News | Comments

In physics, there's small, and then there's nullity, as in zero-dimensional. Univ. of Cincinnati researchers have reached this threshold with a special structure, zero-dimensional quantum dots, that may someday lead to better ways of harnessing solar energy, stronger lasers or more sensitive medical diagnostic devices.

Physicists discover “quantum droplet” in semiconductor

February 26, 2014 3:25 pm | News | Comments

JILA physicists used an ultrafast laser and help from German theorists to discover a new semiconductor quasiparticle, a handful of smaller particles that briefly condense into a liquid-like droplet. Quasiparticles are composites of smaller particles that can be created inside solid materials and act together in a predictable way.

A cavity that you want

February 25, 2014 4:53 pm | by Cory Nealon, Univ. of Buffalo | News | Comments

Associated with unhappy visits to the dentist, “cavity” means something else in the science of optics. An arrangement of mirrors that allows beams of light to circulate in closed paths, or cavities, help us build laser and optical fibers. Now, a research team pushed the concept further by developing an optical “nanocavity” that boosts the amount of light that ultrathin semiconductors absorb.

Possible explanation for light-degradation silicon solar cells

February 13, 2014 10:19 am | by Ralf Butscher, Helmholtz Center | News | Comments

An undesired effect in thin film amorphous silicon solar cells has puzzled the scientific community for the last 40 years. This effect, known as light-induced degradation, is responsible for reducing solar cell efficiency over time. Researchers in Germany have recently demonstrated that tiny voids within the silicon network are partly responsible for 10 to 15% efficiency loss as soon as they are used.

3-D-stacked hybrid SRAM cell to be built by European scientists

February 7, 2014 9:49 am | News | Comments

European scientists from both academia and industry have begun an ambitious new research project focused on an alternative approach to extend Moore's Law. The research project, coordinated IBM Research in Zurich and called COMPOSE³, is based on the use of new materials to replace today's silicon, and on taking an innovative design approach where transistors are stacked vertically, known as 3-D stacking.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading