Advertisement
Semiconductors
Subscribe to Semiconductors

The Lead

Research finds “tunable” semiconductors will allow better detectors, solar cells

April 14, 2014 12:53 pm | by Ann Claycombe, Georgia State Univ. | News | Comments

One of the great problems in physics is the detection of electromagnetic radiation—that is, light—which lies outside the small range of wavelengths that the human eye can see. Think x-rays, for example, or radio waves. Now, researchers have discovered a way to use existing semiconductors to detect a far wider range of light than is now possible, well into the infrared range.

Scalable CVD process for making 2-D molybdenum diselenide

April 8, 2014 11:04 am | News | Comments

Nanoengineering researchers at Rice Univ. and Nanyang Technological Univ. in Singapore have...

New level of control gained for promising class of semiconductor

April 1, 2014 3:33 pm | News | Comments

Germanium monosulfide (GeS) is emerging as one of...

Flipping the switch on magnetism in strontium titanate

March 31, 2014 8:09 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

Interest in oxide-based semiconductor electronics has exploded in recent years, fueled largely...

View Sample

FREE Email Newsletter

Ultra-thin light detectors combine two very different technologies

March 27, 2014 9:36 am | News | Comments

Until now, it has been hard to couple light generation into layered semiconductor systems. Scientists in Austria have recently solved this problem using metamaterials, which are able to manipulate light in the terahertz range due to their special microscopic structure. This represents the first combination of metamaterials and quantum cascade structures.  

Source-gated transistor could pave the way for flexible gadgets

March 25, 2014 1:06 pm | News | Comments

Existing transistors act as electronic switches, altering current flow through a semiconductor by controlling the bias voltage across the channel region. A new electronic component, called a source-gated transistor, has been developed in the U.K. and exploits physical effects such as the Schottky barriers at metal-semiconductor contacts. This innovation could improve the reliability of future digital circuits used within flexible gadgets.

New semiconductor holds promise for 2-D physics, electronics

March 21, 2014 7:54 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

From super-lubricants, to solar cells, to the fledgling technology of valleytronics, there is much to be excited about with the discovery of a unique new 2-D semiconductor, rhenium disulfide, by researchers at Lawrence Berkeley National Laboratory’s Molecular Foundry. Rhenium disulfide, unlike molybdenum disulfide and other dichalcogenides, behaves electronically as if it were a 2-D monolayer even as a 3-D bulk material.

Advertisement

New technique makes LEDs brighter, more resilient

March 19, 2014 8:24 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a new processing technique that makes light-emitting diodes (LEDs) brighter and more resilient by coating the semiconductor material gallium nitride (GaN) with a layer of phosphorus-derived acid.

Surface characteristics influence cellular growth on semiconductor material

March 12, 2014 10:03 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Changing the texture and surface characteristics of a semiconductor material at the nanoscale can influence the way that neural cells grow on the material. The finding stems from a study performed by researchers at North Carolina State Univ., the Univ. of North Carolina at Chapel Hill and Purdue Univ., and may have utility for developing future neural implants.

Imec achieves record 8.4% efficiency in fullerene-free organic solar cells

March 11, 2014 9:50 am | News | Comments

Organic solar cells are a compelling thin-film photovoltaic technology in part because of their compatibility with flexible substrates and tunable absorption window. Belgium-based chipmaker imec has set a new conversion efficiency record of 8.4% for this type of cell by developing fullerene-free acceptor materials and a new multilayer semiconductor device structure.

New hybrid material promising for solar fuels

March 9, 2014 11:42 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A new study by Berkeley Lab researchers shows that nearly 90% of the electrons generated by a hybrid material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules. Interfacing the semiconductor gallium phosphide with a cobaloxime catalyst provides an inexpensive photocathode for bionic leaves that produce energy-dense fuels from nothing more than sunlight, water and carbon dioxide.

Scientists create optical nanocavity to improve light absorption in semiconductors

March 7, 2014 1:14 pm | News | Comments

Experts from the Univ. of Buffalo (UB), helped by colleagues from two Chinese universities, have developed an optical "nanocavity" that could help increase the amount of light absorbed by ultrathin semiconductors. The advancement could lead to the creation of more powerful photovoltaic cells and improvements in video cameras and even hydrogen fuel, as the technology could aid the splitting of water using energy from light.

Advertisement

LED lamps: Less energy, more light with gallium nitride

March 7, 2014 12:55 pm | News | Comments

Light-emitting diodes (LEDs) are durable and save energy. Now, researchers have found a way to make LED lamps even more compact while supplying more light than commercially available models. The key to this advance are a new type of transistors made of the semiconductor material gallium nitride.

Physics in 3-D? That's nothing. Try 0-D

March 4, 2014 10:43 am | by Tom Robinette, Univ. of Cincinnati | News | Comments

In physics, there's small, and then there's nullity, as in zero-dimensional. Univ. of Cincinnati researchers have reached this threshold with a special structure, zero-dimensional quantum dots, that may someday lead to better ways of harnessing solar energy, stronger lasers or more sensitive medical diagnostic devices.

Physicists discover “quantum droplet” in semiconductor

February 26, 2014 3:25 pm | News | Comments

JILA physicists used an ultrafast laser and help from German theorists to discover a new semiconductor quasiparticle, a handful of smaller particles that briefly condense into a liquid-like droplet. Quasiparticles are composites of smaller particles that can be created inside solid materials and act together in a predictable way.

A cavity that you want

February 25, 2014 4:53 pm | by Cory Nealon, Univ. of Buffalo | News | Comments

Associated with unhappy visits to the dentist, “cavity” means something else in the science of optics. An arrangement of mirrors that allows beams of light to circulate in closed paths, or cavities, help us build laser and optical fibers. Now, a research team pushed the concept further by developing an optical “nanocavity” that boosts the amount of light that ultrathin semiconductors absorb.

Possible explanation for light-degradation silicon solar cells

February 13, 2014 10:19 am | by Ralf Butscher, Helmholtz Center | News | Comments

An undesired effect in thin film amorphous silicon solar cells has puzzled the scientific community for the last 40 years. This effect, known as light-induced degradation, is responsible for reducing solar cell efficiency over time. Researchers in Germany have recently demonstrated that tiny voids within the silicon network are partly responsible for 10 to 15% efficiency loss as soon as they are used.

Advertisement

3-D-stacked hybrid SRAM cell to be built by European scientists

February 7, 2014 9:49 am | News | Comments

European scientists from both academia and industry have begun an ambitious new research project focused on an alternative approach to extend Moore's Law. The research project, coordinated IBM Research in Zurich and called COMPOSE³, is based on the use of new materials to replace today's silicon, and on taking an innovative design approach where transistors are stacked vertically, known as 3-D stacking.

Scientists produce first ever atom-by-atom simulation of ALD nanoscale film growth

February 5, 2014 1:18 pm | News | Comments

Researchers at Tyndall National Institute in Ireland have produced the first ever atom-by-atom simulation of nanoscale film growth by atomic layer deposition (ALD), a thin-film technology used in the production of silicon chips. The accomplishment required the acquisition of the complete set of hundreds of ALD reactions at the quantum mechanical level.

Staying cool in the nanoelectric universe by getting hot

January 22, 2014 11:40 am | by Cory Nealon, Univ. at Buffalo | News | Comments

New research hints that nanodevices in microcircuits can protect themselves from heat generation through the transformation of nanotransistors into quantum states. The finding, demonstrated in nanoscale semiconductors devices, could boost computing power without large-scale changes to electronics.

Making silicon devices responsive to infrared light

January 2, 2014 7:59 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have tried a variety of methods to develop detectors that are responsive to a broad range of infrared light, but these methods have all faced limitations. Now, a new system developed by researchers at five institutions could eliminate many of those limitations. The new system works at room temperature and provides a broad infrared response.

ORNL devises recipe to fine-tune diameter of silica rods

December 16, 2013 3:22 pm | News | Comments

The goal of fabricating fixed-size one-dimensional silica structures and being able to precisely control the diameter during growth has long eluded scientists. Now, Oak Ridge National Laboratory researchers Panos Datskos and Jaswinder Sharma have demonstrated what they describe as the addressable local control of diameter of each segment of the silica rod.

Tables turn as nature imitates art

December 11, 2013 1:50 pm | by Angela Herring, Northeastern Univ. | News | Comments

There are exam­ples of art imi­tating nature all around us, from Monet to Chihuly, but when physicist Latika Menon peered under the elec­tron micro­scope last fall, she dis­cov­ered the exact oppo­site in gallium nitride nanowires that bore an uncanny resemblance to artistic pots found in her native India. Menon has begun to control these shapes, which will make the nanowires sig­nif­i­cantly more promising for use in advanced devices.

Pressure transforms a semiconductor into a new state of matter

December 11, 2013 7:40 am | News | Comments

By applying pressure to a semiconductor, researchers have been able to transform a semiconductor into a “topological insulator” (TI), an intriguing state of matter in which a material’s interior is insulating but its surfaces or edges are conducting with unique electrical properties. This is the first time that researchers have used pressure to gradually “tune” a material into the TI state.

Squeezing transistors really hard generates energy savings

December 6, 2013 9:47 am | News | Comments

Transistors, the workhorses of the electronics world, are plagued by leakage current. This results in unnecessary energy losses, which is why smartphones and laptops, for example, have to be recharged so often. Researchers have recently shown that this leakage current can be radically reduced by “squeezing” the transistor with a piezoelectric material. Using this approach, they have surpassed the theoretical limit for leakage current.

Flashes of brilliance

November 25, 2013 11:17 am | News | Comments

Spontaneous bursts of light from a solid block illuminate the unusual way interacting quantum particles behave when they are driven far from equilibrium. The discovery by Rice Univ. scientists of a way to trigger these flashes may lead to new telecommunications equipment and other devices that transmit signals at picosecond speeds.

New milestone could help magnets end era of computer transistors

November 20, 2013 9:48 am | by Sarah Yang, Univ. of California, Berkeley | News | Comments

New work by researchers at Univ. of California, Berkeley could soon transform the building blocks of modern electronics by making nanomagnetic switches a viable replacement for the conventional transistors found in all computers.

Scientists create low-cost, long-lasting water splitter from silicon and nickel

November 15, 2013 11:10 am | by Mark Shwartz, Stanford Univ. | News | Comments

Stanford Univ. researchers have developed an inexpensive device that uses light to split water into oxygen and clean-burning hydrogen. The goal is to supplement solar cells with hydrogen-powered fuel cells that can generate electricity when the sun isn't shining or demand is high.

Nanomagnets arise at 2-D boundaries

November 14, 2013 8:10 am | News | Comments

When you squeeze atoms, you don’t get atom juice. You get magnets. According to a new theory by Rice Univ. scientists, imperfections in certain 2-D materials create the conditions by which nanoscale magnetic fields arise. Calculations by the laboratory of Rice theoretical physicist Boris Yakobson show these imperfections, called grain boundaries, in 2-D semiconducting materials known as dichalcogenides can be magnetic.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading