Subscribe to Polymers
View Sample

FREE Email Newsletter

Organic polymers show sunny potential

May 29, 2013 8:25 am | News | Comments

A new version of solar cells created by laboratories at Rice and Pennsylvania State universities could open the door to research on a new class of solar energy devices. The photovoltaic devices are based on block copolymers, self-assembling organic materials that arrange themselves into distinct layers. They easily outperform other cells with polymer compounds as active elements.

Research improves dry lubricant used in machinery, biomedical devices

May 17, 2013 10:44 am | News | Comments

Nearly everyone is familiar with the polytetrafluoroethylene (PTFE), otherwise known as Teflon. Famous for being “non-sticky” and water repellent, PTFE is a dry lubricant used on machine components everywhere. Recently, engineering researchers at the University of Arkansas found a way to make the polymer even less adhesive.

Physicists discover a new kind of friction

May 15, 2013 11:26 am | News | Comments

In a quest to develop low-friction components for ever smaller mechanical systems, a team of physicists in Germany has recently discovered a previously unknown type of friction that they call “desorption stick.” The researchers examined how and why single polymer molecules in various solvents slide over or stick to certain surfaces. They found that an unexpected factor was responsible for the friction they observed.


Safer, eco-friendly flame retardant has first-of-its-kind dual effects

May 15, 2013 11:13 am | News | Comments

Amid concerns over the potential health effects of existing flame retardants for home furniture, fabrics and other material, are reporting development of an “exceptionally” effective new retardant that appears safer and more environmentally friendly. The key is a nanocoating made with a relatively benign polymer that creates a “gas blanket,” preventing oxygen from fueling a fire.

Building protocells from inorganic nanoparticles

May 10, 2013 8:07 am | News | Comments

Cells are the basic unit of life and are separated from the outside world by a thin organic membrane. A major function of this membrane is to allow certain molecules to enter or leave the cell whilst other molecules are blocked from the cell interior. This allows metabolic processes to take place. Controlling membrane permeability is therefore a key challenge when building artificial cells in the form of enclosed chemical systems.

Nanoparticles give major enhancement to polymer solar cells

May 7, 2013 11:11 am | News | Comments

A polymer thin film solar cell (PSC) produces electricity from sunlight by the photovoltaic effect. Though light and inexpensive, PSCs currently suffer from a lack of enough efficiency for large scale applications and they also have stability problems. Researches in Korea have designed and added multi-positional silica-coated silver nanoparticles that have greatly improved stability and performance of these cells.

Composite thermoelectric outperforms constituent materials

May 6, 2013 1:05 pm | News | Comments

A team led by Lawrence Berkeley National Laboratory Materials Sciences Division’s Jeffrey Urban and Rachel Segalman have discovered highly conductive polymer behavior occurring at a polymer/nanocrystal interface. The composite organic/inorganic material is a thermoelectric—a material capable of converting heat into electricity—and has a higher performance than either of its constituent materials.

Mysterious catalyst explained

May 1, 2013 9:01 am | by Julia Weiler, Ruhr University Bochum | News | Comments

Methanol to formaldehyde: This reaction is the starting point for the synthesis of many everyday plastics. Using catalysts made of gold particles, however, formaldehyde could be produced without the environmentally hazardous waste generated in conventional methods. But just how a gold catalyst could work has only recently been discovered by researchers. 


Antibacterial hydrogel offers protection from stubborn infections

April 24, 2013 5:00 pm | News | Comments

Coating medical supplies with an antimicrobial material is one approach that bioengineers are using to combat the increasing spread of multidrug-resistant bacteria. A research team in Singapore has now developed a highly effective antimicrobial coating based on cationic polymers. The coating can be applied to medical equipment, such as catheters.

Navy develops high-impact, high-integrity polymer

April 17, 2013 2:04 pm | News | Comments

U.S. Naval Research Laboratory scientists have developed a second-generation, cost-effective polyetheretherketone (PEEK)-like phthalonitrile-resin demonstrating superior high-temperature and flammability properties for use in marine, aerospace, and domestic applications. The resin can be used to make composite components by established industrial methods and automated composite manufacturing techniques.

Better batteries from waste sulfur

April 15, 2013 8:17 am | News | Comments

A new chemical process can transform waste sulfur into a lightweight plastic that may improve batteries for electric cars, reports a University of Arizona-led team. The new plastic has other potential uses, including optical uses. The team has successfully used the new plastic to make lithium-sulfur batteries.

Accidental discovery may lead to improved polymers

April 6, 2013 2:48 pm | News | Comments

The accidental discovery by Chemical Engineering Professor Tim Bender and postdoctoral fellow Benoit Lessard of an unexpected side product of polymer synthesis could have implications for the manufacture of commercial polymers used in sealants, adhesives, toys, and even medical implants, the researchers say.

Teijin enhances heat and impact resistance of its bioplastic

April 3, 2013 3:11 pm | News | Comments

Japan-based Teijin Limited has developed technology to significantly enhance the heat and impact resistance of PLANEXT, the company’s high-performance bioplastic. The technology modifies the molecular design of PLANEXT to achieve greatly improved heat resistance with a glass-transition temperature of 120 C, as well as superior resistance to impact.


Nanoengineered plastic film is the future of 3D on-the-go

April 2, 2013 12:40 pm | News | Comments

Ditch the 3D glasses. Thanks to a simple plastic filter, mobile device users can now view unprecedented, distortion-free, brilliant 3D content with the naked eye. This latest innovation from researchers in Singapore is the first ever glasses-free 3D accessory that can display content in both portrait and landscape mode, and measures less than 0.1 mm in thickness.

A new way to create synthetic polymers using genetic coding in DNA

April 2, 2013 7:45 am | by Peter Reuell, Harvard University | News | Comments

Scientists may soon be able to turn to one of the most powerful forces in biology—evolution—to help in their quest to develop new synthetic polymers. As described in a recent paper, a team of Harvard University researchers has developed a new method to create synthetic polymers using the coding of genetic material. The method may eventually be used to evolve synthetic polymers with new or improved properties such as the ability to serve as catalysts in chemical reactions or enhanced therapeutic potential.

Carbon dioxide could help produce valuable chemical cheaply

March 21, 2013 5:09 pm | News | Comments

Chemical companies each year churn out billions of tons of acrylate, a valuable commodity chemical involved in the manufacture of everything from polyester cloth to disposable diapers. It is usually made by heating propylene, a compound derived from crude oil. Researchers at Brown and Yale universities have demonstrated a new “enabling technology” that could instead use excess carbon dioxide to produce acrylate.

Researchers trap light, improve laser potential of MEH-PPV polymer

March 21, 2013 8:33 am | News | Comments

Researchers from North Carolina State University have come up with a low-cost way to enhance a polymer called MEH-PPV's ability to confine light, advancing efforts to use the material to convert electricity into laser light for use in photonic devices.

Researchers improve laser potential of MEH-PPV polymer

March 18, 2013 1:45 pm | News | Comments

MEH-PPV is a low-cost polymer that can be integrated with silicon chips, and researchers have sought to use it to convert electricity into laser light for use in photonic devices. However, attempts to do this have failed because the amount of electricity needed to generate laser light in MEH-PPV was so high that it caused the material to degrade. Researchers have recently come up with a low-cost way to enhance MEH-PPV’s ability to confine light, protecting the material.

AMSilk develops first man-made, scalable spider silk fiber

March 11, 2013 9:24 am | News | Comments

Germany-based company AMSilk has produced the world’s first competitive man-made spider silk fiber, called Biosteel, which is made entirely from recombinant silk proteins. Biosteel has mechanical properties similar to that of natural spider silk when comparing toughness, a measure indicating the kinetic energy absorbed before the fiber breaks.

New surface coating cuts through the fog

March 5, 2013 9:08 am | by David L. Chandler, MIT News Office | News | Comments

Until recently, there has been no systematic way of evaluating how different anti-fog coatings perform under real-world conditions. A team of MIT researchers has developed such a testing method, and used it to find a coating that outperforms others not only in preventing foggy buildups, but also in maintaining good optical properties without distortion.

Polymer scientists develop double switchable membrane

February 27, 2013 10:46 pm | News | Comments

Pharmaceutical residues in water can pose a danger to humans. Filtration is often very difficult as these trace substances, which are soluble in water, are so minute. Newly-developed double switchable membranes could make it possible to filter these molecules, as well as other  biomolecules such as proteins and nucleic acids. The new membranes can reduce or enlarge pore size through changes in temperature and pH value.

Research to probe deep within a solar cell

February 25, 2013 9:54 am | News | Comments

Engineers and scientists from the University of Sheffield have pioneered a new technique to analyze PCBM, a material used in polymer photovoltaic cells, obtaining details of the structure of the material which will be vital to improving the cell's efficiency.

Supramolecular “Velcro” aids underwater adhesion

February 22, 2013 8:50 am | News | Comments

When gluing things together, both surfaces usually need to be dry. Gluing wet surfaces or surfaces under water is a challenge. Korean scientists have now introduced a completely new concept. They were able to achieve reversible underwater adhesion by using supramolecular "Velcro".

New imaging device is flexible, flat, and transparent

February 20, 2013 12:20 pm | News | Comments

A research team in Austria has developed an entirely new way of capturing images based on a flat, flexible, transparent, and potentially disposable polymer sheet. The new imager, which resembles a flexible plastic film, uses fluorescent particles to capture incoming light and channel a portion of it to an array of sensors framing the sheet. With no electronics or internal components, the imager’s elegant design makes it ideal for a new breed of imaging technologies.

Photo-growth of pores in a polymer gel network

February 7, 2013 9:08 am | News | Comments

Researchers at the Massachusetts Institute of Technology have pioneered a new method for producing polymer gels with tailored mechanical properties. The approach, which depends on the use of ultraviolet to break chemical bonds and prime them for new connections, could be used to make new materials that physically grow towards a light source in order to optimize their properties.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.