Advertisement
Polymers
Subscribe to Polymers
View Sample

FREE Email Newsletter

Teijin enhances heat and impact resistance of its bioplastic

April 3, 2013 3:11 pm | News | Comments

Japan-based Teijin Limited has developed technology to significantly enhance the heat and impact resistance of PLANEXT, the company’s high-performance bioplastic. The technology modifies the molecular design of PLANEXT to achieve greatly improved heat resistance with a glass-transition temperature of 120 C, as well as superior resistance to impact.

Nanoengineered plastic film is the future of 3D on-the-go

April 2, 2013 12:40 pm | News | Comments

Ditch the 3D glasses. Thanks to a simple plastic filter, mobile device users can now view unprecedented, distortion-free, brilliant 3D content with the naked eye. This latest innovation from researchers in Singapore is the first ever glasses-free 3D accessory that can display content in both portrait and landscape mode, and measures less than 0.1 mm in thickness.

A new way to create synthetic polymers using genetic coding in DNA

April 2, 2013 7:45 am | by Peter Reuell, Harvard University | News | Comments

Scientists may soon be able to turn to one of the most powerful forces in biology—evolution—to help in their quest to develop new synthetic polymers. As described in a recent paper, a team of Harvard University researchers has developed a new method to create synthetic polymers using the coding of genetic material. The method may eventually be used to evolve synthetic polymers with new or improved properties such as the ability to serve as catalysts in chemical reactions or enhanced therapeutic potential.

Advertisement

Carbon dioxide could help produce valuable chemical cheaply

March 21, 2013 5:09 pm | News | Comments

Chemical companies each year churn out billions of tons of acrylate, a valuable commodity chemical involved in the manufacture of everything from polyester cloth to disposable diapers. It is usually made by heating propylene, a compound derived from crude oil. Researchers at Brown and Yale universities have demonstrated a new “enabling technology” that could instead use excess carbon dioxide to produce acrylate.

Researchers trap light, improve laser potential of MEH-PPV polymer

March 21, 2013 8:33 am | News | Comments

Researchers from North Carolina State University have come up with a low-cost way to enhance a polymer called MEH-PPV's ability to confine light, advancing efforts to use the material to convert electricity into laser light for use in photonic devices.

Researchers improve laser potential of MEH-PPV polymer

March 18, 2013 1:45 pm | News | Comments

MEH-PPV is a low-cost polymer that can be integrated with silicon chips, and researchers have sought to use it to convert electricity into laser light for use in photonic devices. However, attempts to do this have failed because the amount of electricity needed to generate laser light in MEH-PPV was so high that it caused the material to degrade. Researchers have recently come up with a low-cost way to enhance MEH-PPV’s ability to confine light, protecting the material.

AMSilk develops first man-made, scalable spider silk fiber

March 11, 2013 9:24 am | News | Comments

Germany-based company AMSilk has produced the world’s first competitive man-made spider silk fiber, called Biosteel, which is made entirely from recombinant silk proteins. Biosteel has mechanical properties similar to that of natural spider silk when comparing toughness, a measure indicating the kinetic energy absorbed before the fiber breaks.

New surface coating cuts through the fog

March 5, 2013 9:08 am | by David L. Chandler, MIT News Office | News | Comments

Until recently, there has been no systematic way of evaluating how different anti-fog coatings perform under real-world conditions. A team of MIT researchers has developed such a testing method, and used it to find a coating that outperforms others not only in preventing foggy buildups, but also in maintaining good optical properties without distortion.

Advertisement

Polymer scientists develop double switchable membrane

February 27, 2013 10:46 pm | News | Comments

Pharmaceutical residues in water can pose a danger to humans. Filtration is often very difficult as these trace substances, which are soluble in water, are so minute. Newly-developed double switchable membranes could make it possible to filter these molecules, as well as other  biomolecules such as proteins and nucleic acids. The new membranes can reduce or enlarge pore size through changes in temperature and pH value.

Research to probe deep within a solar cell

February 25, 2013 9:54 am | News | Comments

Engineers and scientists from the University of Sheffield have pioneered a new technique to analyze PCBM, a material used in polymer photovoltaic cells, obtaining details of the structure of the material which will be vital to improving the cell's efficiency.

Supramolecular “Velcro” aids underwater adhesion

February 22, 2013 8:50 am | News | Comments

When gluing things together, both surfaces usually need to be dry. Gluing wet surfaces or surfaces under water is a challenge. Korean scientists have now introduced a completely new concept. They were able to achieve reversible underwater adhesion by using supramolecular "Velcro".

New imaging device is flexible, flat, and transparent

February 20, 2013 12:20 pm | News | Comments

A research team in Austria has developed an entirely new way of capturing images based on a flat, flexible, transparent, and potentially disposable polymer sheet. The new imager, which resembles a flexible plastic film, uses fluorescent particles to capture incoming light and channel a portion of it to an array of sensors framing the sheet. With no electronics or internal components, the imager’s elegant design makes it ideal for a new breed of imaging technologies.

Photo-growth of pores in a polymer gel network

February 7, 2013 9:08 am | News | Comments

Researchers at the Massachusetts Institute of Technology have pioneered a new method for producing polymer gels with tailored mechanical properties. The approach, which depends on the use of ultraviolet to break chemical bonds and prime them for new connections, could be used to make new materials that physically grow towards a light source in order to optimize their properties.

Advertisement

Stronger than Kevlar, light as a tee-shirt

February 4, 2013 8:52 am | by Angela Herring, Northeastern University | News | Comments

Traditionally, carbon fibers are made by “carbonizing” a polymer called poly-acrylonitrile, or PAN, by spinning it into a fiber and heating to form a homogenous carbons structure. Since its invention, improvement have been incremental, and version made with 100% carbon nanotubes are extremely expensive. A researcher at Northeastern University is working on a much cheaper, and stronger, alternative.

Exotic chemical compound could be useful in batteries

January 24, 2013 2:08 pm | News | Comments

Northwestern University graduate student Jonathan Barnes had a hunch for creating an exotic new chemical compound, and his idea that the force of love is stronger than hate proved correct. He and his colleagues are the first to permanently interlock two identical tetracationic rings that normally are repelled by each other. Many experts had said it couldn't be done.

New antimicrobial hydrogels fight superbugs and drug-resistant biofilms

January 24, 2013 8:20 am | News | Comments

Bacterial biofilms, which diseased groupings of cells found in 80% of infections, are a significant health hazard and one of the biggest headaches for hospitals and their constant battle against disease. Researchers from IBM, with the help of scientists in Singapore, revealed today a synthetic antimicrobial hydrogel that can break through diseased biofilms and completely eradicate drug-resistant bacteria upon contact. It is the first hydrogel to be biodegradable, biocompatible, and non-toxic.

Sensors from a spray can: Organic materials increase camera sensitivity

January 23, 2013 5:41 pm | News | Comments

Researchers in Germany have developed a new generation of image sensors that are more sensitive to light than the conventional silicon versions. Simple and cheap to produce, they consist of electrically conductive plastics which are sprayed onto the sensor surface in an ultra-thin layer. The chemical composition of the polymer spray coating can be altered so that even the invisible range of the light spectrum can be captured.   

Bisphenol A substitute could spell trouble

January 23, 2013 8:35 am | News | Comments

In the same week that a team of researchers in France announced the harmful effects of bisphenol A (BPA) on hormone levels in human tissue, researchers in Texas have demonstrated through experiments that the BPA substitute bisphenol S also disrupts hormone activity at an extremely low level of exposure, and in an even more problematic way.

Study: Harmful effects of bisphenol A proven

January 22, 2013 11:43 am | News | Comments

The compound bisphenol A, which is found in plastics and resins, has been under scrutiny as chemists attempt to determine whether it is a health hazard for humans. According to researchers in France, even weak concentrations of bisphenol A are sufficient to produce a negative reaction in human testicles, reducing the production of testosterone hormones.

A light switch inside the brain

January 18, 2013 11:06 am | News | Comments

Scientists in Germany and Switzerland have developed an implant that is able to genetically modify specific nerve cells, control them with light stimuli, and measure their electrical activity all at the same time. This new tool relies on an innovative genetic technique that forces nerve cells to change their activity by shining light of different colors onto them.

Self-assembled “soft Legos” create complex crystal shapes

January 17, 2013 12:24 pm | News | Comments

A team of researchers in Austria has shown that so-called block copolymer stars—polymers that consist of two different blocks and are chemically anchored on a common point—have a robust and flexible architecture and they possess the ability to self-assemble at different levels. The team has called their invention, which can form complex crystal diamonds or cubes, the “soft Lego”.

New material harvests energy from water vapor

January 10, 2013 2:50 pm | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have created a new polymer film that can generate electricity by drawing on a ubiquitous source: water vapor. The new material changes its shape after absorbing tiny amounts of evaporated water, allowing it to repeatedly curl up and down. Harnessing this continuous motion could drive robotic limbs or generate enough electricity to power micro- and nanoelectronic devices, such as environmental sensors.

Mussels inspire innovative new adhesive for surgery

January 9, 2013 6:33 pm | News | Comments

Mussels can be a mouthwatering meal, but the chemistry that lets mussels stick to underwater surfaces may also provide a highly adhesive wound closure and more effective healing from surgery. Researchers have incorporated the chemical structure from the mussel's adhesive protein into the design of an injectable synthetic polymer. The bioadhesives adhere well in wet environments, have controlled degradability, and improved biocompatibility.

Stopping leaks the way blood does

January 8, 2013 2:00 pm | by David L. Chandler, MIT News Office | News | Comments

A team of Massachusetts Institute of Technology researchers has analyzed the blood clotting process and found, for the first time, exactly how the different molecular components work together to block the flow of blood from a cut. Now, they are working on applying that knowledge to the development of synthetic materials that could be used to control different kinds of liquid flows, and could lead to a variety of new self-assembling materials.

Thermoplastic composites made simpler to produce

December 6, 2012 12:41 pm | News | Comments

Continuous fiber-reinforced composites with thermoplastic matrix resins are well suited for use in automotive manufacturing, but the process of creating them is complex and expensive. A new approach now makes it possible to use an injection molding process. Previously, injection molding was limited to fiber-reinforced composites made of short fibers or long fibers.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading