Advertisement
Polymers
Subscribe to Polymers

The Lead

Nature inspires a greener way to make colorful plastics

July 30, 2014 2:00 pm | News | Comments

Long before humans figured out how to create colors, nature had already perfected the process. Now scientists are tapping into those secrets to develop a more environmentally friendly way to make colored plastics. Their paper on using structure—or the shapes and architectures of materials—rather than dyes, to produce color appears in Nano Letters.

Scientists create model “bead-spring” chains with tunable properties

July 28, 2014 2:25 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. researchers are using magnetic beads and DNA “springs” to create chains of varying...

Technique simplifies the creation of high-tech crystals

July 22, 2014 2:29 pm | News | Comments

Highly purified crystals that split light with...

From stronger Kevlar to better biology

July 14, 2014 9:17 am | by Angela Herring, Northeastern Univ. | News | Comments

Mar­ilyn Minus, a materials expert and assis­tant...

View Sample

FREE Email Newsletter

Study: Plastic debris widespread on ocean surface

July 1, 2014 11:03 am | News | Comments

Plastic junk is floating widely on the world's oceans, but there's less of it than expected, a study says. A newly published study drew on results from an around-the-world cruise by a research ship that towed a mesh net at 141 sites, as well as other studies. Researchers estimated the total amount of floating plastic debris in open ocean at 7,000 to 35,000 tons.

Carbon-fiber epoxy honeycombs mimic material performance of balsa wood

June 25, 2014 4:06 pm | by Paul Karoff, Harvard Univ. | News | Comments

In wind farms across North America and Europe, sleek turbines equipped with state-of-the-art technology convert wind energy into electric power. But tucked inside the blades of these feats of modern engineering is a decidedly low-tech core material: balsa wood.

Researchers in China develop cheaper method for making superlyophobic surfaces

June 11, 2014 11:41 am | News | Comments

Superlyophobic surfaces are simultaneously repellant for almost any liquid and exhibit high contact angles and low flow resist. But the demanding and usually expensive fabrication remains a bottleneck for further development. Researchers in Shenzhen, China, however, have now formulated a facile and inexpensive microfabrication method that uses polymers to help transfer the superlyophobic structures to curable materials.

Advertisement

Designing ion “highway systems” for batteries

June 10, 2014 2:19 pm | News | Comments

Since the early 1970s, lithium has been the most popular element for batteries because of it’s low weight and good electrochemical potential. But it is also highly flammable. Researchers have recently married two traditional theories in materials science that can explain how the charge dictates the structure of the material. And using this they may be able to move to other materials, such as block copolymers, for use in batteries.

Targeting tumors using silver nanoparticles

June 9, 2014 8:32 am | by Julie Cohen, UC Santa Barbara | News | Comments

A new nanoparticle platform developed in California increases the efficiency of drug delivery and allows excess particles to be washed away. A simple etching technique using biocompatible chemicals rapidly disassembles and removes the silver nanoparticles outside living cells. This method leaves only the intact nanoparticles for imaging or quantification, revealing which cells have been targeted and how much each cell internalized.

Better tissue healing with disappearing hydrogels

June 9, 2014 8:06 am | by Peter Iglinski, Univ. of Rochester | News | Comments

When stem cells are used to regenerate bone tissue, many wind up migrating away from the repair site, which disrupts the healing process. But a technique employed by a Univ. of Rochester research team keeps the stem cells in place, resulting in faster and better tissue regeneration. The keyis encasing the stem cells in polymers that attract water and disappear when their work is done.

Shatterproof polymer screens to help save smartphones

June 6, 2014 10:57 am | News | Comments

Polymer scientists in Ohio have demonstrated how a transparent layer of electrodes on a polymer surface could be extraordinarily tough and flexible, withstanding repeated scotch tape peeling and bending tests. According to its developers, the new material could replace conventional indium tin oxide coatings currently used for touchscreens.

New “T-ray” tech converts light to sound for weapons detection, medical imaging

May 19, 2014 1:17 pm | News | Comments

Terahertz, or T-ray, range of the electromagnetic has rich promise for scientific applications, but instrumentation that can take advantage of these rays for imaging are still in progress. Univ. of Michigan researchers have recently made a breakthrough by converting terahertz light into sound using a compact, sensitive detector that operates at room temperature and is fabricated in an unusual manner.

Advertisement

IBM research discovers new class of industrial polymers

May 16, 2014 2:03 pm | News | Comments

Scientists at IBM Research have used a new “computational chemistry” hybrid approach to accelerate the materials discovery process that couples laboratory experimentation with the use of high-performance computing. The new polymers are the first to demonstrate resistance to cracking, strength higher than bone, the ability to reform to their original shape (self-heal), and the ability to be completely recycled back to the starting material.

In the wake of high-profile battery fires, a safer approach emerges

May 14, 2014 9:36 am | News | Comments

As news reports of lithium-ion battery (LIB) fires in Boeing Dreamliner planes and Tesla electric cars remind us, these batteries, which are in everyday portable devices, like tablets and smartphones, have their downsides. Now, scientists have designed a safer kind of lithium battery component that is far less likely to catch fire and still promises effective performance.

Using nature as a model for low-friction bearings

May 14, 2014 9:30 am | News | Comments

The mechanical properties of natural joints are considered unrivalled. Cartilage is coated with a special polymer layer allowing joints to move virtually friction-free, even under high pressure. Using simulations, scientists in Europe have developed a new process that technologically imitates biological lubrication and even improves it using two different types of polymers.

Regenerating plastic grows back after damage

May 9, 2014 8:08 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Looking at a smooth sheet of plastic in one Univ. of Illinois laboratory, no one would guess that an impact had recently blasted a hole through it. Illinois researchers have developed materials that not only heal, but regenerate. Until now, self-repairing materials could only bond tiny microscopic cracks. The new regenerating materials fill in large cracks and holes by regrowing material.

Detecting trace amounts of explosives with light

May 8, 2014 11:12 am | News | Comments

Research in Australia may help in the fight against terrorism with the creation of a sensor that can detect tiny quantities of explosives with the use of light and special glass fibers. The researchers have created a new optical fiber sensor which can detect explosives in concentrations as low as 6.3 ppm (parts per million). It requires an analysis time of only a few minutes.

Advertisement

Engineers develop basis for electronics that stretch at the molecular level

May 5, 2014 11:37 am | News | Comments

Current approaches to flexible electronics, in which very thin semiconductor materials are applied to a thin, flexible substrate in wavy patterns and then applied to a deformable surface such as skin or fabric, are still built around hard composite materials that limit their elasticity. Researchers in California have made several discoveries, however, that could lead to electronics that are "molecularly stretchable."

Innovative imaging technique clarifies molecular self-assembly

May 5, 2014 9:50 am | News | Comments

Super-resolution microscopy has allowed optical imaging of objects with dimensions smaller than the diffraction limit. Researchers studying a type of material called supramolecular polymers have used this type of imaging to develop a new technique that allows them study molecular self-assembly at an unprecedented level of detail.

Gecko-like adhesives now useful for real world surfaces

April 21, 2014 3:12 pm | News | Comments

The ability to stick objects to a wide range of surfaces such as drywall, wood, metal and glass with a single adhesive has been the elusive goal of many research teams across the world, but now a team of Univ. of Massachusetts Amherst inventors describe a new, more versatile version of their invention, Geckskin, that can adhere strongly to a wider range of surfaces, yet releases easily, like a gecko's feet.

Nanoreporters tell ‘sour’ oil from ‘sweet’

April 21, 2014 8:38 am | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have created a nanoscale detector that checks for and reports on the presence of hydrogen sulfide in crude oil and natural gas while they’re still in the ground. The nanoreporter is based on nanometer-sized carbon material developed by a consortium of Rice labs led by chemist James Tour, R&D’s 2013 Scientist of the Year.  

Electrically controlled polymer changes its optical properties

April 18, 2014 8:28 am | News | Comments

An international team of chemists from Italy, Germany and Poland have developed a polymer with unique optical and electrical properties. Components of this polymer change their spatial configuration depending on the electric potential applied. In turn, the polarization of transmitted light is affected. The new material could be used in a windows, polarization filters or chemical sensors.

Information storage for the next generation of plastic computers

April 17, 2014 9:41 am | by Gary Galluzzo, Univ. of Iowa | News | Comments

Although it is relatively cheap and easy to encode information in light for fiber optic transmission, storing information is most efficiently done using magnetism, which ensures information will survive for years without any additional power. But a new proposal by researchers would replace silicon used in these devices with plastic. Their solution converts magnetic information to light in a flexible plastic device.

Promising agents burst through superbug defenses to fight antibiotic resistance

April 10, 2014 9:02 am | News | Comments

In the fight against “superbugs,” scientists have discovered a class of agents that can make some of the most notorious strains vulnerable to the same antibiotics that they once handily shrugged off. Recently discovered metallopolymers, when paired with the same antibiotics MRSA normally dispatches with ease, helped evade the bacteria’s defensive enzymes and destroyed its protective walls, causing the bacteria to burst.

Noses, made in Britain: UK touts lab-grown organs

April 9, 2014 3:12 pm | by Maria Cheng, AP Medical Writer | News | Comments

In a north London hospital, scientists are growing noses, ears and blood vessels in a bold attempt to make body parts in the laboratory. It's far from the only laboratory in the world that is growing organs for potential transplant. But the London work was showcased this week hints at the availability of more types of body parts, including what would be the world's first nose made partly from stem cells.

New micro-environment could be major advance for stem cell growth strategies

April 1, 2014 8:18 am | News | Comments

Stem cells have the potential to repair human tissue and maintain organ function in chronic disease, but a major problem has been how to mass-produce such a complex living material. Scientists in the U.K. have now developed a new substance which could simplify the manufacture of therapeutic cells by allowing both self-renewal of cells and evolution into cardiomyocyte cells.

Heat-conducting polymer cools hot electronic devices at 200 C

March 31, 2014 7:27 am | by John Toon, Georgia Institute of Technology | News | Comments

Polymer materials are usually thermal insulators. But by harnessing an electropolymerization process to produce aligned arrays of polymer nanofibers, researchers have developed a thermal interface material able to conduct heat 20 times better than the original polymer. The modified material can reliably operate at temperatures of up to 200 C.

Research on 3-D scaffolds sets new bar in lung regeneration

March 9, 2014 11:44 pm | by Jennifer Nachbur, Univ. of Vermont | News | Comments

In end-stage lung disease, transplantation is sometimes the only viable therapeutic option, but organ availability is limited and rejection presents an additional challenge. New methods and techniques in the field of tissue regeneration hold promise for this population, which includes an estimated 12.7 million people with chronic obstructive pulmonary disorder (COPD).

Manufacturing a solution to planet-clogging plastics

March 7, 2014 9:06 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

Researchers at Harvard Univ.'s Wyss Institute have developed a method to carry out large-scale manufacturing of everyday objects using a fully degradable bioplastic isolated from shrimp shells. The objects exhibit many of the same properties as those created with synthetic plastics, but without the environmental threat. It also trumps most bioplastics on the market today in posing absolutely no threat to trees.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading