Advertisement
Nanotechnology
Subscribe to Nanotechnology
View Sample

FREE Email Newsletter

Quick-change materials break the silicon speed limit for computers

September 19, 2014 4:28 pm | by Stephen Elliott , Univ. of Cambridge | News | Comments

Faster, smaller, greener computers, capable of processing information up to 1,000 times faster than currently available models, could be made possible by replacing silicon with materials that can switch back and forth between different electrical states. Recent research in the U.K. show that these phase-change materials have promise in new processors made with chalcogenide glass.

Smartgels are thicker than water

September 19, 2014 10:08 am | by Poncie Rutsch, Okinawa Institute of Science and Technology | News | Comments

Transforming substances from liquids into gels plays an important role across many industries, but the transformation process, called gelation, is expensive and energy demanding. Instead of adding chemical thickeners and heating or cooling the fluids, as is traditional, researchers in Okinawa are experimenting with microfluidic platforms, adding nanoparticles and biomolecules with used pH, chemical and temperature sensing properties.

Advanced molecular “sieves” could be used for carbon capture

September 18, 2014 12:33 pm | News | Comments

Researchers from the Univ. of Cambridge have developed advanced molecular synthetic membranes, or “sieves”, which could be used to filter carbon dioxide and other greenhouse gases from the atmosphere. The sieves were made by heating microporous polymers using low levels of oxygen which, produces a tougher and far more selective membrane that is still relatively flexible.

Advertisement

Physicists heat freestanding graphene to control curvature of ripples

September 18, 2014 8:52 am | News | Comments

While freestanding graphene offers promise as a replacement for silicon and other materials in microprocessors and next-generation energy devices, much remains unknown about its mechanical and thermal properties. An international team of physicists, led by a research group at the Univ. of Arkansas, has recently discovered that heating can be used to control the curvature of ripples in freestanding graphene.

Scientists refine formula for nanotube types

September 17, 2014 9:52 am | by Mike Williams, Rice Univ. | Videos | Comments

Many a great idea springs from talks over a cup of coffee. But it’s rare and wonderful when a revelation comes from the cup itself. Rice Univ. theoretical physicist Boris Yakobson, acting upon sudden inspiration at a meeting last year, obtained a couple of spare coffee cups from a server and a pair of scissors and proceeded to lay out—science fair-style—an idea that could have far-reaching implications for the nanotechnology industry.

Nanoribbon film keeps glass ice-free

September 17, 2014 7:58 am | by Jade Boyd, Rice Univ. | News | Comments

Rice Univ. scientists who created a deicing film for radar domes have now refined the technology to work as a transparent coating for glass. The new work by Rice chemist James Tour and his colleagues could keep glass surfaces from windshields to skyscrapers free of ice and fog while retaining their transparency to radio frequencies (RF).

“Squid skin” metamaterials project yields vivid color display

September 16, 2014 7:41 am | by Jade Boyd, Rice Univ. | News | Comments

The quest to create artificial “squid skin”—camouflaging metamaterials that can “see” colors and automatically blend into the background—is one step closer to reality, thanks to a breakthrough color-display technology unveiled by Rice Univ. The new full-color display technology uses aluminum nanoparticles to create the vivid red, blue and green hues found in today’s top-of-the-line LCD televisions and monitors.

Scientists now closer to industrial synthesis of a material harder than diamond

September 15, 2014 12:16 pm | News | Comments

Researchers in Russia have developed a new method for the industrial synthesis of an ultra-hard material that exceeds diamond in hardness. An article recently published in Carbon describes in detail a method that allows for the synthesis of ultrahard fullerite, a polymer composed of fullerenes, or spherical molecules made of carbon atoms.

Advertisement

Materials experts construct precise inter-nanotube junctions

September 15, 2014 12:05 pm | News | Comments

A new method for controllably constructing precise inter-nanotube junctions and structures in carbon nanotube (CNT) arrays, Northeastern Univ. researchers say, is facile and easily scal­able. It will allow them to tailor the phys­ical prop­er­ties of nan­otube net­works for use in appli­ca­tions ranging from elec­tronic devices to CNT-reinforced com­posite mate­rials found in every­thing from cars to sports equipment.

Researchers roll “neat” nanotube fibers

September 15, 2014 7:57 am | by Mike Williams, Rice Univ. | News | Comments

The very idea of fibers made of carbon nanotubes is neat, but Rice Univ. scientists are making them neat—literally. The single-walled carbon nanotubes in new fibers created at Rice line up like a fistful of uncooked spaghetti through a process designed by chemist Angel Martí and his colleagues.

Magnetism intensified by defects

September 12, 2014 1:53 pm | News | Comments

As integrated circuits become increasingly miniaturized and the sizes of magnetic components approach nanoscale dimensions, magnetic properties can disappear. Scientists in Japan, with the help of a form of electron microscopy called split-illumination electron holography, have gained important insights into the development of stable, strong nanomagnets by discovering magnetism-amplifying atomic disorder in iron-aluminum alloys.

Engineers describe key mechanism in energy and information storage

September 12, 2014 8:48 am | by Bjorn Carey, Stanford News Service | News | Comments

The ideal energy or information storage system is one that can charge and discharge quickly, has a high capacity and can last forever. Nanomaterials are promising to achieve these criteria, but scientists are just beginning to understand their challenging mechanisms. Now, a team from Stanford Univ. has provided new insight into the storage mechanism of nanomaterials that could facilitate development of improved batteries and memory devices.

Physicists find new way to push electrons around

September 12, 2014 7:49 am | by David L. Chandler, MIT News Office | News | Comments

When moving through a conductive material in an electric field, electrons tend to follow the path of least resistance—which runs in the direction of that field. But now physicists have found an unexpectedly different behavior under very specialized conditions—one that might lead to new types of transistors and electronic circuits that could prove highly energy efficient.

Advertisement

“Electronic skin” could improve early breast cancer detection

September 10, 2014 1:09 pm | News | Comments

For detecting cancer, manual breast exams seem low-tech compared to other methods such as MRI. But scientists are now developing an “electronic skin” that “feels” and images small lumps that fingers can miss. Knowing the size and shape of a lump could allow for earlier identification of breast cancer, which could save lives.

New "dry" process creates artificial membranes on silicon

September 9, 2014 2:42 pm | News | Comments

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.

Buckyballs, diamondoids join forces in tiny electronic gadget

September 9, 2014 12:38 pm | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

Scientists have married two unconventional forms of carbon to make a molecule that conducts electricity in only one direction. This tiny electronic component, known as a rectifier, could play a key role in shrinking chip components down to the size of molecules to enable faster, more powerful devices.

Nanotechnology to provide cleaner diesel engines

September 9, 2014 8:32 am | by Bertel Henning Jensen, Technical Univ. of Denmark | News | Comments

When it comes to diesel engine catalysts, which are responsible for cleansing exhaust fumes, platinum has unfortunately proved to be the only viable option. This has resulted in material costs alone accounting for half of the price of a diesel catalyst. Researchers in Denmark say they have developed a new way to manufacture catalysts that may result in a 25% reduction in the use of platinum.

Doped graphene nanoribbons with potential

September 9, 2014 7:40 am | News | Comments

Typically a highly conductive material, graphene becomes a semiconductor when prepared as an ultra-narrow ribbon. Recent research has now developed a new method to selectively dope graphene molecules with nitrogen atoms. By seamlessly stringing together doped and undoped graphene pieces, ”heterojunctions” are formed in the nanoribbons, allowing electric current to flow in only one direction when voltage is applied.

Ultra-thin detector captures unprecedented range of light

September 8, 2014 8:13 am | by Heather Dewar, Media Relations, Univ. of Maryland | News | Comments

New research at the Univ. of Maryland could lead to a generation of light detectors that can see below the surface of bodies, walls and other objects. Using the special properties of graphene, a prototype detector is able to see an extraordinarily broad band of wavelengths. Included in this range are terahertz waves, which are invisible to the human eye.

Phosphorus a promising semiconductor

September 8, 2014 8:02 am | by Mike Williams, Rice Univ. | News | Comments

Defects damage the ideal properties of many 2-D materials, like carbon-based graphene. Phosphorus just shrugs. That makes it a promising candidate for nanoelectronic applications that require stable properties, according to new research by Rice Univ. theoretical physicist Boris Yakobson and his colleagues.

Berkeley Lab licenses boron nitride nanotube technology

September 5, 2014 9:06 am | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Nearly 20 years ago researcher Alex Zettl of the Lawrence Berkeley National Laboratory synthesized in his laboratory a new material never before seen by nature: boron nitride nanotubes, the strongest, lightest, most thermally conducting and most chemically resistant fiber known to exist. Now a startup has licensed this technology with the aim of manufacturing boron nitride nanotubes for commercial use.

Magnetic nanocubes self-assemble into helical superstructures

September 5, 2014 7:46 am | by Jeanne Galatzer-Levy, Univ. of Illinois, Chicago | News | Comments

Materials made from nanoparticles hold promise for myriad applications. The challenge in creating these wonder materials is organizing the nanoparticles into orderly arrangements. Nanoparticles of magnetite, the most abundant magnetic material on earth, are found in living organisms from bacteria to birds. Nanocrystals of magnetite self-assemble into fine compass needles in the organism that help it to navigate.

Ultrasensitive biosensor from molybdenite semiconductor outshines graphene

September 4, 2014 12:58 pm | News | Comments

A new atomically thin 2-D ultrasensitive semiconductor material developed by researchers California promises to push the boundaries of biosensing technology toward single-molecule detection. Based on molybdenum disulfide or molybdenite, the biosensor material which is used commonly as a dry lubricant, surpasses graphene’s already high sensitivity, offers better scalability and lends itself to high-volume manufacturing.

Breakthrough for carbon nanotube solar cells

September 3, 2014 11:47 am | by Amanda Morris, Northwestern Univ. | News | Comments

Lighter, more flexible and cheaper than conventional solar-cell materials, carbon nanotubes (CNTs) have long shown promise for photovoltaics. But research stalled when CNTs proved to be inefficient, converting far less sunlight into power than other methods. Now a research team has created a new type of CNT solar cell that is twice as efficient as its predecessors.  

Researchers observe the phenomenon of "lithium plating" during the charging process

September 3, 2014 8:55 am | News | Comments

When metallic lithium forms and deposits during the charging process in a lithium-ion battery, it can lead to a reduced battery lifespan and even short circuits. Using neutron beams, scientists have now peered into the inner workings of a functioning battery without destroying it. In the process, they have resolved this so-called lithium plating mystery.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading