Advertisement
Nanotechnology
Subscribe to Nanotechnology
View Sample

FREE Email Newsletter

Bending in search of new materials

November 11, 2014 2:15 pm | by Britt Faulstick, Drexel Univ. | News | Comments

Making a paper airplane in school used to mean trouble. Today it signals a promising discovery in materials science research that could help next-generation technology get off the ground. Researchers at Drexel Univ. and Dalian Univ. of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight.

A billion holes can make a battery

November 11, 2014 9:19 am | by Martha Heil, Univ. of Maryland | Videos | Comments

Researchers at the Univ. of Maryland have invented a single tiny structure that includes all the components of a battery that they say could bring about the ultimate miniaturization of energy storage components. The structure is called a nanopore: a tiny hole in a ceramic sheet that holds electrolyte to carry the electrical charge between nanotube electrodes at either end.

Microbot muscles: Chains of particles assemble and flex

November 11, 2014 7:57 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a step toward robots smaller than a grain of sand, Univ. of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines. So-called microbots would be handy in many areas. But several challenges lie between current technologies and science fiction possibilities. Two of the big ones are building the bots and making them mobile.

Advertisement

First look at atom-thin boundaries

November 10, 2014 10:55 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory have made the first direct observations of a 1-D boundary separating two different, atom-thin materials, enabling studies of long-theorized phenomena at these interfaces. Theorists have predicted the existence of intriguing properties at 1-D boundaries between two crystalline components, but experimental verification has eluded researchers.

New materials yield record efficiency polymer solar cells

November 10, 2014 10:20 am | by Tracey Peake, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. and Hong Kong Univ. of Science and Technology have found that temperature-controlled aggregation in a family of new semiconducting polymers is the key to creating highly efficient organic solar cells that can be mass produced more cheaply. Their findings also open the door to experimentation with different chemical mixtures that comprise the active layers of the cells.

Leading the charge for a panel-powered car

November 6, 2014 10:08 am | by Queensland Univ. of Technology | News | Comments

A car powered by its own body panels could soon be driving on our roads after a breakthrough in nanotechnology research by a Queensland Univ. of Technology team.                          

Longhorn beetle inspires ink to fight counterfeiting

November 5, 2014 9:30 am | by American Chemical Society | News | Comments

From water marks to colored threads, governments are constantly adding new features to paper money to stay one step ahead of counterfeiters. Now a longhorn beetle has inspired yet another way to foil cash fraud, as well as to produce colorful, changing billboards and art displays. In ACS Nano, researchers report a new kind of ink that mimics the beetle’s color-shifting ability in a way that would be long-lasting and difficult to copy.

Better bomb-sniffing technology

November 4, 2014 7:53 am | by Vincent Horiuchi, Univ. of Utah | News | Comments

Univ. of Utah engineers have developed a new type of carbon nanotube material for handheld sensors that will be quicker and better at sniffing out explosives, deadly gases and illegal drugs. Carbon nanotubes are known for their strength and high electrical conductivity and are used in products from baseball bats and other sports equipment to lithium-ion batteries and touchscreen computer displays.

Advertisement

Outsmarting thermodynamics in self-assembly of nanostructures

November 3, 2014 1:56 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

If you can uniformly break the symmetry of nanorod pairs in a colloidal solution, you’re a step ahead of the game toward achieving new and exciting metamaterial properties. But traditional thermodynamic-driven colloidal assembly of these metamaterials, which are materials defined by their non-naturally-occurring properties, often result in structures with high degree of symmetries in the bulk material.

Chemists gain edge in next-gen energy

November 3, 2014 1:37 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists who want to gain an edge in energy production and storage report they have found it in molybdenum disulfide. The Rice laboratory of chemist James Tour has turned molybdenum disulfide’s 2-D form into a nanoporous film that can catalyze the production of hydrogen or be used for energy storage.

Technique turns antibodies into highly tuned nanobodies

November 3, 2014 7:53 am | by Zach Veilleux, The Rockefeller Univ. | News | Comments

Antibodies, in charge of recognizing and homing in on molecular targets, are among the most useful tools in biology and medicine. Nanobodies—antibodies’ tiny cousins—can do the same tasks, for example marking molecules for research or flagging diseased cells for destruction. But, thanks to their comparative simplicity nanobodies offer the tantalizing prospect of being much easier to produce.

A quantum leap in nanoparticle efficiency

October 31, 2014 12:55 pm | News | Comments

In an international study Univ. of Melbourne and NIST found that pairs of closely spaced nanoparticles made of gold can act as “optical antennas”. These antennae concentrate the light shining on them into tiny regions located in the gap between the nanoparticles. Researchers found the precise geometry of nanoparticle pairs that maximizes light concentration, resolving a hotly debated area of quantum physics.

Microrockets fueled by water neutralize chemical, biological warfare agents

October 30, 2014 8:46 am | by American Chemical Society | News | Comments

With fears growing over chemical and biological weapons falling into the wrong hands, scientists are developing microrockets to fight back against these dangerous agents, should the need arise. In ACS Nano, they describe new spherical micromotors that rapidly neutralize chemical and biological agents and use water as fuel.

Advertisement

Tiny nanopores make big impact

October 30, 2014 8:05 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

A team led by the Lawrence Livermore National Laboratory scientists has created a new kind of ion channel consisting of short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores that transport water, protons, small ions and DNA. These carbon nanotube “porins” have significant implications for future health care and bioengineering applications.

Nanoparticle safety: The quest for the gold standard

October 29, 2014 9:53 am | News | Comments

Researching the safety of nanoparticles is all the rage. Thousands of scientists worldwide are conducting research on the topic, examining the question of whether titanium dioxide nanoparticles or carbon nanotubes can get into the body’s lungs or blood. However, the amount of new knowledge has only increased marginally. How do nanoparticles get into the body? Researchers in Switzerland are attempting to establish standards.

Cheap and efficient method improves SERS

October 28, 2014 12:07 pm | News | Comments

Researchers with CiQUS in Spain have developed a new method to overcome limitations of surface enhanced Raman spectroscopy (SERS), an ultra-sensitive analytical technique able to detect chemicals in very low concentration. The research results show how to cut production costs of substrates and also tackle the lack of reproducibility usually associated to this technique.

Self-assembled membranes hint at biomedical applications

October 28, 2014 11:36 am | by David Lindley, Argonne National Laboratory | News | Comments

Techniques for self-assembling of molecules have grown increasingly sophisticated, but biological structures remain a challenge. Recently, scientists have used self-assembly under controlled conditions to create a membrane consisting of layers with distinctly different structures. At the Advanced Photon Source, the team has studied the structures and how they form, paving the way for hierarchical structures with biomedical applications.

Watching the hidden life of materials

October 28, 2014 9:25 am | News | Comments

Researchers at McGill Univ. have succeeded in simultaneously observing the reorganizations of atomic positions and electron distribution during the transformation of the “smart material” vanadium dioxide from a semiconductor into a metal. The observations are made in a time frame a trillion times faster than the blink of an eye.

Cooking up carbon: Sawdust and iron in the melting pot

October 24, 2014 10:16 am | News | Comments

Researchers in the U.K. have found a new way to make nanostructured carbon using the waste product sawdust. By cooking sawdust with a thin coating of iron at 700 C, they have discovered that they can create carbon with a structure made up of many tiny tubes. These tubes are one thousand times smaller than an average human hair.

3-D metamaterials with a natural bent

October 24, 2014 8:44 am | News | Comments

Scientists have been able to manufacture 3-D isotropic metamaterials, but up to now only on a very small scale. Now, in a significant breakthrough, scientists from RIKEN, in collaboration with colleagues in Taiwan, have succeeded in creating a large metamaterial up to 4-mm-square in size that is essentially isotropic, using a type of metamaterial element called a split-ring resonator.

Breaking the nano barrier

October 24, 2014 8:00 am | by New York Univ. | News | Comments

Researchers at the New York Univ. Polytechnic School of Engineering have broken new ground in the development of proteins that form specialized fibers used in medicine and nanotechnology. For as long as scientists have been able to create new proteins that are capable of self-assembling into fibers, their work has taken place on the nanoscale. For the first time, this achievement has been realized on the microscale.

NIST offers electronics industry two ways to snoop on self-organizing molecules

October 23, 2014 12:33 pm | News | Comments

A few short years ago, the idea of a practical manufacturing process based on getting molecules to organize themselves in useful nanoscale shapes seemed far-fetched. Recent work at NIST, Massachusetts Institute of Technology and IBM Almaden Research Center suggest this capability isn’t far off, however, by demonstrating self-assembly of thin films on a polymer template that creates precise rows just 10 nm wide.

Could I squeeze by you?

October 22, 2014 8:15 am | by Breehan Gerleman Lucchesi, Communications Specialist, Ames Laboratory | News | Comments

Scientists at Ames Laboratory have developed deeper understanding of the ideal design for mesoporous nanoparticles used in catalytic reactions, such as hydrocarbon conversion to biofuels. The research will help determine the optimal diameter of channels within the nanoparticles to maximize catalytic output.

Crystallizing the DNA nanotechnology dream

October 20, 2014 9:46 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

DNA has garnered attention for its potential as a programmable material platform that could spawn entire new and revolutionary nanodevices in computer science, microscopy, biology and more. Researchers have been working to master the ability to coax DNA molecules to self-assemble into the precise shapes and sizes needed in order to fully realize these nanotechnology dreams.

Scientist invent new method for fabricating graphene nanoribbons

October 17, 2014 9:23 am | by Shaun Mason, UCLA | News | Comments

Graphene’s exotic properties can be tailored by cutting large sheets down to ribbons of specific lengths and edge configurations. But this “top-down” fabrication approach is not yet practical, because current lithographic techniques always produce defects. Now, scientists from the U.S. and Japan have discovered a new “bottom-up” self-assembly method for producing defect-free graphene nanoribbons with periodic zigzag-edge regions.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading