Advertisement
Nanotechnology
Subscribe to Nanotechnology
View Sample

FREE Email Newsletter

Antibodies from the desert act as guides to disease cells

June 13, 2014 8:19 am | News | Comments

Researchers have developed nanoparticles that not only bypass the body’s defence system, but also find their way to the diseased cells. The procedure uses fragments from a particular type of antibody that only occurs in camels and llamas. The small particles were even successful under conditions which are very similar to the situation within potential patients’ bodies.

Manipulating and detecting ultra-high-frequency sound waves

June 12, 2014 7:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

An advance has been achieved towards next-generation ultrasonic imaging with potentially 1,000 times higher resolution than today’s medical ultrasounds. Researchers with Lawrence Berkeley National Laboratory have demonstrated a technique for producing, detecting and controlling ultra-high-frequency sound waves at the nanometer scale.

Nanotube forests drink water from arid air

June 12, 2014 7:27 am | by Mike Williams, Rice Univ. | News | Comments

If you don’t want to die of thirst in the desert, be like the beetle. Or have a nanotube cup handy. New research by scientists at Rice Univ. demonstrated that forests of carbon nanotubes can be made to harvest water molecules from arid desert air and store them for future use.

Advertisement

DNA-lined nanoparticles form switchable thin films on liquid surface

June 11, 2014 8:22 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Scientists seeking ways to engineer the assembly of tiny particles measuring just billionths of a meter have achieved a new first: the formation of a single layer of nanoparticles on a liquid surface where the properties of the layer can be easily switched. Understanding the assembly of such nanostructured thin films could lead to the design of new kinds of membranes with a variable mechanical response for a wide range of applications.

Improvements in image-detection applications on the horizon

June 11, 2014 7:56 am | by Mike Janes, Sandia National Laboratories | News | Comments

Researchers at Sandia National Laboratories, along with collaborators from Rice Univ. and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

Charging portable electronics in 10 minutes

June 10, 2014 3:09 pm | by Sean Nealon, UC Riverside | News | Comments

Researchers at the University of California, Riverside Bourns College of Engineering have developed a 3-D, silicon-decorated, cone-shaped carbon-nanotube cluster architecture for lithium ion battery anodes that could enable charging of portable electronics in 10 minutes. It also increases cell capacity and reduces size and weight by 40%.

Researchers create nanoparticle thin films that self-assemble in one minute

June 10, 2014 7:51 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The days of self-assembling nanoparticles taking hours to form a film over a microscopic-sized wafer are over. Researchers with Lawrence Berkeley National Laboratory have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

New nanoparticles bring cheaper, lighter solar cells outdoors

June 9, 2014 11:37 am | by Marit Mitchell, Senior Communications Office, Univ. of Toronto | News | Comments

Think those flat, glassy solar panels on your neighbor’s roof are the pinnacle of solar technology? Think again. Researchers at Univ. of Toronto have designed and tested a new class of solar-sensitive nanoparticle that outshines the current state of the art employing this new class of technology.

Advertisement

Targeting tumors using silver nanoparticles

June 9, 2014 8:32 am | by Julie Cohen, UC Santa Barbara | News | Comments

A new nanoparticle platform developed in California increases the efficiency of drug delivery and allows excess particles to be washed away. A simple etching technique using biocompatible chemicals rapidly disassembles and removes the silver nanoparticles outside living cells. This method leaves only the intact nanoparticles for imaging or quantification, revealing which cells have been targeted and how much each cell internalized.

Evolution of a bimetallic nanocatalyst

June 9, 2014 7:58 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Atomic-scale snapshots of a bimetallic nanoparticle catalyst in action have provided insights that could help improve the industrial process by which fuels and chemicals are synthesized from natural gas, coal or plant biomass. A multinational laboratory collaboration has taken the most detailed look ever at the evolution of platinum/cobalt bimetallic nanoparticles during reactions in oxygen and hydrogen gases.

Seeing how a lithium-ion battery works

June 9, 2014 7:44 am | by David L. Chandler, MIT News Office | News | Comments

New observations by researchers at Massachusetts Institute of Technology have revealed the inner workings of a type of electrode widely used in lithium-ion batteries. The new findings explain the unexpectedly high power and long cycle life of such batteries, the researchers say.

Opening a wide window on the nano-world of surface catalysis

June 6, 2014 10:20 am | by Steven Powell, Univ. of South Carolina | News | Comments

Surface catalysts are notoriously difficult to study mechanistically, but scientists at two universities have recently shown how to get real-time reaction information from silver nanocatalysts that have long frustrated attempts to describe their kinetic behavior in detail. The key to the team's success was bridging a size gap that had represented a wide chasm to researchers in the past.

Self-assembling nanomachines start to click

June 5, 2014 2:09 pm | by Leila Gray, University of Washington | News | Comments

A route for constructing protein nanomachines engineered for specific applications may now be closer to reality. Recent research has described the development of new Rosetta software that enables the design of protein nanomaterials composed of multiple copies of distinct protein subunits, which arrange themselves into higher order, symmetrical architectures. It has been used to create a nanocage, built by itself from engineered components.

Advertisement

Berkeley Lab scientists create first fully 2-D field effect transistors

June 4, 2014 3:03 pm | News | Comments

Faster electronic device architectures are in the offing with the unveiling of the world’s first fully 2-D field-effect transistor (FET) by researchers at Lawrence Berkeley National Laboratory. Unlike conventional FETs made from silicon, these 2-D FETs suffer no performance drop-off under high voltages and provide high electron mobility, even when scaled to a monolayer in thickness.

Breakthrough greatly strengthens graphene-reinforced composites

June 4, 2014 10:07 am | News | Comments

Haydale, a U.K.-based developer of a unique plasma functionalization process for nanomaterials, has announced the publication of research showing its functionalized graphene nanoplatelets significantly improve the nanoscale reinforcement of resin. The report states a greater than two times increase in tensile strength and modulus of an epoxy composite using this technology.

Rice produces carbon-capture breakthrough

June 4, 2014 7:47 am | Videos | Comments

Rice Univ. scientists have created an Earth-friendly way to separate carbon dioxide from natural gas at wellheads. A porous material invented by the Rice laboratory of chemist James Tour sequesters carbon dioxide, a greenhouse gas, at ambient temperature with pressure provided by the wellhead and lets it go once the pressure is released. The material shows promise to replace more costly and energy-intensive processes.

Rice Univ. produces carbon-capture breakthrough

June 4, 2014 7:14 am | News | Comments

A porous material invented by the Rice Univ. lab of chemist James Tour sequesters carbon dioxide, a greenhouse gas, at ambient temperature with pressure provided by the wellhead and lets it go once the pressure is released. The material shows promise to replace more costly and energy-intensive processes.

Researchers predict the electrical response of metals to extreme pressures

June 3, 2014 10:50 am | News | Comments

Rensselaer Polytechnic Institute scientists have developed a method that can predict how subjecting metals to severe pressure can lower their electrical resistance. The finding which involved theoretical predictions, use of a supercomputer, and equipment capable of exerting pressures up to 40,000 atmospheres, could have applications in computer chips and other materials that could benefit from specific electrical resistance.

Discovery sheds light on how to control self-assembly process

June 3, 2014 8:35 am | News | Comments

Imagine a tower that builds itself into the desired structure only by choosing the appropriate bricks. Absurd, but in the nano world self-assembly is now a common practice for forming structures. Researchers in Austria have been investigating how they can control the ordering of self-assembling structures and discovered how to switch the assembly process on and off.

Scientists find stronger 3-D material that behaves like graphene

June 3, 2014 8:17 am | by Glennda Chui, SLAC National Accelerator Laboratory | News | Comments

Scientists have discovered a material that has the same extraordinary electronic properties as 2-D graphene, but in a sturdy 3-D form that should be much easier to shape into electronic devices such as very fast transistors, sensors and transparent electrodes. The material, cadmium arsenide, is being explored independently by three groups.

Scientists use DNA origami trick to create 2-D structures

June 2, 2014 10:23 am | News | Comments

Scientists at New York Univ. and the Univ. of Melbourne have developed a method using DNA origami to turn 1-D nanomaterials into two dimensions. Their breakthrough, published in Nature Nanotechnology, offers the potential to enhance fiber optics and electronic devices by reducing their size and increasing their speed.

Surprising nanotubes: Some slippery, some sticky

June 2, 2014 7:39 am | by David L. Chandler, MIT News Office | News | Comments

Nanotubes have been the subject of intensive research, with potential uses ranging from solar cells to chemical sensors to reinforced composite materials. Most of the research has centered on carbon nanotubes, but other nanotubes’ properties appear to be similar. However, appearances can be deceiving, as researchers have found when examining one variant of nanotube made from boron nitride.

Unexpected water explains surface chemistry of nanocrystals

May 30, 2014 8:35 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

A team at Lawrence Berkeley National Laboratory found unexpected traces of water in semiconducting nanocrystals. The water as a source of small ions for the surface of colloidal lead sulfide nanoparticles allowed the team to explain just how the surface of these important particles are passivated, meaning how they achieve an overall balance of positive and negative ions.

Hitchhiking nanotubes show how cells stir themselves

May 30, 2014 7:50 am | Videos | Comments

A team of researchers has successfully tracked single molecules inside living cells with carbon nanotubes. Through this new method, the researchers found that cells stir their interiors using the same motor proteins that serve in muscle contraction. The study, which sheds new light on biological transport mechanisms in cells, appears in Science.

SABIC collaborates with Cima Nanotech on new conductive, transparent film

May 29, 2014 9:01 am | News | Comments

Saudi Arabian-based petrochemical company SABIC and Cima NanoTech have announced the joint development of a new transparent conductive polycarbonate film. The collaboration leverages both Cima NanoTech’s proprietary SANTE nanoparticle technology and SABIC’s LEXAN film to produce a film that outperforms indium tin oxide by a factor of ten.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading