Advertisement
Nanotechnology
Subscribe to Nanotechnology
View Sample

FREE Email Newsletter

The new atomic age: Building smaller, greener electronics

July 7, 2014 3:06 pm | by Bryan Alary, Univ. of Alberta | News | Comments

Robert Wolkow and his team at the Univ. of Alberta are working to engineer atomically precise computing technologies that have practical, real-world applications. In recent research, he and his team observed for the first time how an electrical current flows across the skin of a silicon crystal and also measured electrical resistance as the current moved over a single atomic step.

With "ribbons" of graphene, width matters

July 7, 2014 9:39 am | by Laura L. Hunt, UW-Milwaukee | News | Comments

Using graphene ribbons just several atoms across, a group of researchers at the Univ. of Wisconsin-Milwaukee has found a novel way to “tune” the material, causing the extremely efficient conductor of electricity to act as a semiconductor. By imaging the ribbons with scanning-tunneling microscopy, researchers have confirmed how narrow the ribbon width must be. Achieving less than 10 nm in width is a big challenge.

Japanese gold leaf artists worked on the nanoscale

July 2, 2014 3:10 pm | News | Comments

Ancient Japanese gold leaf artists were truly masters of their craft. An analysis of six of these Japanese paper screens show that these artifacts are gilded with gold leaf that was hand-beaten to the nanometer scale. The study was able to prove this without any damage to the screens through the use of x-ray fluorescence spectroscopy.

Advertisement

Toward a new way to keep electronics from overheating

July 2, 2014 1:05 pm | News | Comments

Using something called a microchannel heat sink to simulate the warm environment of a working computer, researchers in Malaysia have analyzed three nanofluids for the traits that are important in an effective coolant. The results of their study show that the nanofluids, which are made of metallic nanoparticles that have been added to a liquid, such as water, all performed better than water as coolants, with one mixture standing out.

Inspired by nature, researchers create tougher metal materials

July 2, 2014 11:56 am | News | Comments

Materials science experts in North Carolina and China collaborated on work that drew inspiration from the structure of bones and bamboo. The team has found that by gradually changing the internal structure of metals, stronger, tougher materials can be created and customized for a wide variety of applications, from body armor to automobile parts. The gradient structure concept works on numerous metals, including stainless steel and nickel.

Separating finely mixed oil and water

July 1, 2014 11:51 am | by David L. Chandler, MIT News Office | News | Comments

Whenever there is a major spill of oil into water, the two tend to mix into a suspension of tiny droplets, called an emulsion, that is extremely hard to separate and can cause severe damage to ecosystems. A new membrane developed by Massachusetts Institute of Technology researchers can separate even these highly mixed fine oil-spill residues.

A smashing new look at nanoribbons

July 1, 2014 9:56 am | News | Comments

Recent research at the Rice Univ. lab of materials scientist Pulickel Ajayan has discovered that nanotubes that hit a target end first turn into mostly ragged clumps of atoms. But nanotubes that happen to broadside the target unzip into handy ribbons that can be used in composite materials for strength and applications that take advantage of their desirable electrical properties.

Interlayer distance in graphite oxide gradually changes when water is added

June 30, 2014 2:21 pm | News | Comments

Physicists in Europe have solved a mystery that has puzzled scientists for half a century. it has long been known that the distance between the graphene oxide layers depends on the humidity, not the actual amount of water added. But now, with the help of powerful microscopes, it can be seen how distance between graphite oxide layers gradually increases when water molecules are added, and why this phenomenon occurs.

Advertisement

More pores for more power

June 30, 2014 2:10 pm | News | Comments

Researchers in Germany have produced a new material the size of a sugar cube that has a surface area equivalent to more than seven tennis courts. This novel type of nanofiber has a highly ordered and porous structure gives it an extraordinarily high surface-to-volume ratio and could be a key enabling technology for lithium-sulfur batteries.

Scientists develop force sensor from carbon nanotubes

June 30, 2014 2:05 pm | News | Comments

A group of researchers from Russia, Belarus and Spain, including MIPT professor Yury Lozovik, have developed a microscopic force sensor based on carbon nanotubes. The device consists of two nanotubes placed so that their open ends are opposite to each other. Voltage of just 10 nA is then applied to the nanocircuit and force is measured by the change in position of the nanotubes.

Physicists explain counterintuitive phenomenon in superconductivity

June 30, 2014 8:54 am | by Julie Cohen, UC Santa Barbara | News | Comments

For his doctoral dissertation, Yu Chen developed a novel way to fabricate superconducting nanocircuitry. However, the extremely small zinc nanowires he designed did some unexpected things, including demonstrating dissipation characteristics though only to be present in normal states. After long and careful work, which involved both experimental and theoretical efforts, researchers have found an explanation that fits.

Silver in the washing machine

June 30, 2014 8:35 am | News | Comments

The antibacterial properties of silver-coated textiles are popular in the fields of sport and medicine. A team in Switzerland has now investigated how different silver coatings behave in the washing machine, and they have discovered something important: textiles with nano-coatings release fewer nano-particles into the washing water than those with normal coatings.

Researchers create quantum dots with single-atom precision

June 30, 2014 7:59 am | News | Comments

An international team of physicists including researchers from the U.S. Naval Research Laboratory has used a scanning tunneling microscope to create quantum dots with identical, deterministic sizes. The perfect reproducibility of these dots opens the door to quantum dot architectures completely free of uncontrolled variations, an important goal for technologies from nanophotonics to quantum information processing.

Advertisement

Chemists develop magnetically responsive liquid crystals

June 27, 2014 9:38 am | News | Comments

Scientists at the Univ. of California, Riverside have constructed liquid crystals with optical properties that can be instantly and reversibly controlled by an external magnetic field. Unlike conventional liquid crystals, which rotate and align themselves when an electric field is applied, the new crystals are essentially a liquid dispersion of magnetic nanorods.

Watching nanoscale fluids flow

June 27, 2014 7:48 am | by Kimm Fesenmaier, Caltech | News | Comments

At the nanoscale, where objects are measured in billionths of meters and events transpire in trillionths of seconds, things do not always behave as our experiences with the macro world might lead us to expect. Water, for example, seems to flow much faster within carbon nanotubes than classical physics says should be possible. Now imagine trying to capture movies of these almost imperceptibly small nanoscale movements.

Water-cleanup catalysts tackle biomass upgrading

June 26, 2014 12:33 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. chemical engineer Michael Wong has spent a decade amassing evidence that palladium-gold nanoparticles are excellent catalysts for cleaning polluted water, but even he was surprised at how well the particles converted biodiesel waste into valuable chemicals.

Researchers develop smart gating nanochannels for confined water

June 25, 2014 11:14 am | News | Comments

Confined water exists widely and plays important roles in natural environments, particularly inside biological nanochannels. After several years of work, scientists in China have developed a series of biomimetic nanochannels that can serve as the base for confined transportation of water. The technology suggests a potential use in energy conversion systems.

New synthesis method generates functionalized carbon nanolayers

June 25, 2014 8:10 am | News | Comments

An international team has developed an elegant method for producing self-organized and functionalized carbon nanolayers and equipping them chemically with a range of functions. The effort depended on the development of a special compound, the molecules of which were aligned perfectly in parallel to each other in a single self-organized layer, like the bristles on a brush.

FDA outlines policy for overseeing nanotechnology

June 24, 2014 3:23 pm | by Matthew Perrone - AP Health Writer - Associated Press | News | Comments

Federal regulators want to hear from companies using engineered micro-particles in their products, part of an effort to stay abreast of the growing field of nanotechnology. The U.S. Food and Drug Administration issued final recommendations Tuesday for companies using nanotechnology in products regulated by the government, which can include medical therapies, food and cosmetics.

One step to solar cell efficiency

June 19, 2014 12:42 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have created a one-step process for producing highly efficient materials that let the maximum amount of sunlight reach a solar cell. The Rice laboratory of chemist Andrew Barron found a simple way to etch nanoscale spikes into silicon that allows more than 99% of sunlight to reach the cells’ active elements, where it can be turned into electricity.

Nanoengineering boosts carrier multiplication in quantum dots

June 19, 2014 8:51 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

Los Alamos National Laboratory researchers have demonstrated an almost four-fold boost of the carrier multiplication yield with nanoengineered quantum dots. Carrier multiplication is when a single photon can excite multiple electrons. Quantum dots are novel nanostructures that can become the basis of the next generation of solar cells, capable of squeezing additional electricity out of the extra energy of blue and ultraviolet photons.

Collecting light with artificial moth eyes

June 18, 2014 4:00 pm | News | Comments

Researchers the world over are investigating solar cells which imitate plant photosynthesis, with the goal of using sunlight and water to create synthetic fuels such as hydrogen. Scientists in Switzerland have developed this type of photoelectrochemical cell, but this one recreates a moth’s eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials: iron and tungsten oxide.

Nanofibers for quantum computing

June 17, 2014 4:12 pm | News | Comments

A proposed hybrid quantum processor for a future quantum computer uses trapped atoms as the memory and superconducting qubits as the processor. The concept requires, however, an optical trap that is able to work well with superconductors, which don’t like magnetic fields or high optical power. Joint Quantum Institute scientists believe they’ve developed an effective method for creating these ultra-high transmission optical nanofibers.

Nanoparticle production method could lead to better lights, lenses, solar cells

June 17, 2014 4:02 pm | News | Comments

Titanium dioxide nanoparticles show great promise as optical encapsulants or fillers for tunable refractive index coatings. However, they've been largely shunned because they’ve been difficult and expensive to make. Scientists at Sandia National Laboratories have now come up with an inexpensive way to synthesize properly sized titanium dioxide nanoparticles and is seeking partners who can demonstrate the process at industrial scale.

Nanoshell shields foreign enzymes used to starve cancer cells from immune system

June 17, 2014 11:24 am | News | Comments

Nanoengineers at UC San Diego have developed a nanoshell to protect foreign enzymes used to starve cancer cells as part of chemotherapy. Enzymes are naturally smart machines that are responsible for many complex functions and chemical reactions in biology. However, despite their huge potential, their use in medicine has been limited by the immune system, which is designed to attack foreign intruders.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading