Advertisement
Nanotechnology
Subscribe to Nanotechnology

The Lead

DNA double helix does double duty in assembling nanoparticle arrays

May 29, 2015 8:18 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

In a new twist on the use of DNA in nanoscale construction, scientists at Brookhaven National Laboratory and collaborators put synthetic strands of the biological material to work in two ways: They used ropelike configurations of the DNA double helix to form a rigid geometrical framework, and added dangling pieces of single-stranded DNA to glue nanoparticles in place.

Researchers prove magnetism can control heat, sound

May 29, 2015 7:47 am | by Jamie Abel, Ohio Supercomputer Center | News | Comments

Phonons have magnetic properties. In Nature Materials, Ohio State Univ. researchers...

Physicists precisely measure interaction between atoms, carbon surfaces

May 29, 2015 7:36 am | by Peter Kelley, Univ. of Washington | News | Comments

Physicists at the Univ. of Washington have conducted the most precise and controlled...

Spiraling laser pulses could change graphene

May 28, 2015 11:46 am | by SLAC National Accelerator Laboratory | News | Comments

A new study predicts that researchers could use spiraling pulses of laser light to change the...

View Sample

FREE Email Newsletter

Who needs water to assemble DNA?

May 28, 2015 7:42 am | by John Toon, Georgia Institute of Technology | News | Comments

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based environments, because DNA naturally functions inside the watery environment of living cells. Researchers at the Georgia Institute of Technology have now shown that they can assemble DNA nanostructures in a solvent containing no water.

Bioresorbable electronic stent could provide feedback, therapy

May 27, 2015 10:39 am | by American Chemical Society | News | Comments

Every year, an estimated half-million Americans undergo surgery to have a stent prop open a coronary artery narrowed by plaque. But sometimes the mesh tubes get clogged. Scientists report in ACS Nano a new kind of multi-tasking stent that could minimize the risks associated with the procedure. It can sense blood flow and temperature, store and transmit the information for analysis and can be absorbed by the body after it finishes its job.

A new kind of wood chip

May 27, 2015 7:57 am | by John Steeno, Univ. of Wisconsin-Madison | News | Comments

Portable electronics are discarded at an alarming rate in consumers' pursuit of the next best electronic gadget. In an effort to alleviate the environmental burden of electronic devices, a team of Univ. of Wisconsin-Madison researchers has collaborated with researchers in the Madison-based U.S. Dept. of Agriculture Forest Products Laboratory to develop a surprising solution: a semiconductor chip made almost entirely of wood.

Advertisement

One step closer to a single-molecule device

May 26, 2015 10:57 am | by Columbia Univ. | News | Comments

Under the direction of Latha Venkataraman, associate professor of applied physics at Columbia Engineering, researchers have designed a new technique to create a single-molecule diode, and, in doing so, they have developed molecular diodes that perform 50 times better than all prior designs. Venkataraman's group is the first to develop a single-molecule diode that may have real-world technological applications for nanoscale devices.

Engineering phase changes in nanoparticle arrays

May 26, 2015 7:56 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Scientists at Brookhaven National Laboratory have just taken a big step toward the goal of engineering dynamic nanomaterials whose structure and associated properties can be switched on demand. In a paper appearing in Nature Materials, they describe a way to selectively rearrange the nanoparticles in 3-D arrays to produce different configurations, or phases, from the same nanocomponents.

Slip sliding away

May 26, 2015 7:47 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Scientists at Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates the rare phenomenon of “superlubricity.” The five-person Argonne team combined diamond nanoparticles, small patches of graphene and a diamond-like carbon material to create superlubricity, a highly-desirable property in which friction drops to near zero.

Slinky lookalike “hyperlens” helps us see tiny objects

May 22, 2015 10:27 am | by Cory Nealon, Univ. at Buffalo | News | Comments

It looks like a Slinky suspended in motion. Yet this photonics advancement, called a metamaterial hyperlens, doesn’t climb down stairs. Instead, it improves our ability to see tiny objects. The hyperlens may someday help detect some of the most lethal forms of cancer.

Physicists develop efficient method of signal transmission from nanocomponents

May 22, 2015 9:44 am | by Univ. of Basel | News | Comments

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner.

Advertisement

Simulations predict flat liquid

May 21, 2015 10:11 am | by Academy of Finland | News | Comments

Computer simulations have predicted a new phase of matter: atomically thin 2-D liquid. This prediction pushes the boundaries of possible phases of materials further than ever before. Two-dimensional materials themselves were considered impossible until the discovery of graphene around 10 years ago.

How to make continuous rolls of graphene

May 21, 2015 7:30 am | by David L. Chandler, MIT News Office | News | Comments

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows and membranes to desalinate and purify water. But all these possible uses face the same big hurdle: the need for a scalable and cost-effective method for continuous manufacturing of graphene films.

Printing 3-D graphene structures for tissue engineering

May 20, 2015 8:15 am | by Amanda Morris, Northwestern Univ. | News | Comments

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, and ultra-strong and lightweight structure, graphene has potential for many applications in electronics, energy, the environment and even medicine.

Taking control of light emission

May 20, 2015 7:31 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have found a way to couple the properties of different 2-D materials to provide an exceptional degree of control over light waves. They say this has the potential to lead to new kinds of light detection, thermal management systems and high-resolution imaging devices.

Laser technique for self-assembly of nanostructures

May 19, 2015 8:38 am | by Swinburne Univ. of Technology | News | Comments

Researchers from Swinburne Univ. of Technology and the Univ. of Science and Technology of China have developed a low-cost technique that holds promise for a range of scientific and technological applications. They have combined laser printing and capillary force to build complex, self-assembling microstructures using a technique called laser printing capillary-assisted self-assembly (LPCS).

Advertisement

Wearables may get boost from boron-infused graphene

May 18, 2015 7:51 am | by Mike Williams, Rice Univ. | News | Comments

A microsupercapacitor designed by scientists at Rice Univ. that may find its way into personal and even wearable electronics is getting an upgrade. The laser-induced graphene device benefits greatly when boron becomes part of the mix. The Rice lab of chemist James Tour uses commercial lasers to create thin, flexible supercapacitors by burning patterns into common polymers.

Nanosponge-filled gel cleans up MRSA infections

May 18, 2015 7:23 am | by Univ. of California, San Diego | News | Comments

Nanoengineers at the Univ. of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA, an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA, without the use of antibiotics.

Brookhaven Lab scientist Kevin Yager (left) and postdoctoral researcher Pawel Majewski with the new Laser Zone Annealing instrument at the Center for Functional Nanomaterials.

Intense lasers cook up complex, self-assembled nanomaterials 1,000 times faster

May 15, 2015 11:38 am | by Brookhaven National Laboratory | News | Comments

Nanoscale materials feature extraordinary, billionth-of-a-meter qualities that transform everything from energy generation to data storage. But while a nanostructured solar cell may be fantastically efficient, that precision is notoriously difficult to achieve on industrial scales. The solution may be self-assembly, or training molecules to stitch themselves together into high-performing configurations.

First large-scale graphene fabrication

May 14, 2015 4:32 pm | by Ron Walli, Oak Ridge National Laboratory | News | Comments

One of the barriers to using graphene at a commercial scale could be overcome using a method demonstrated by researchers at Oak Ridge National Laboratory. Graphene, a material stronger and stiffer than carbon fiber, has enormous commercial potential but has been impractical to employ on a large scale, with researchers limited to using small flakes of the material.

New shortcut to solar cells

May 13, 2015 4:38 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have found a way to simplify the manufacture of solar cells by using the top electrode as the catalyst that turns plain silicon into valuable black silicon. Black silicon is silicon with a highly textured surface of nanoscale spikes or pores that are smaller than the wavelength of light. The texture allows the efficient collection of light from any angle, at any time of day.

Nanomaterials inspired by bird feathers

May 13, 2015 12:24 pm | by Univ. of California, San Diego | News | Comments

Inspired by the way iridescent bird feathers play with light, scientists have created thin films of material in a wide range of pure colors with hues determined by physical structure rather than pigments. Structural color arises from the interaction of light with materials that have patterns on a minute scale, which bend and reflect light to amplify some wavelengths and dampen others.

Nano-policing pollution

May 13, 2015 11:27 am | by Kaoru Natori, OIST | News | Comments

Pollutants emitted by factories and car exhausts affect humans who breathe in these harmful gases and also aggravate climate change up in the atmosphere. Being able to detect such emissions is a critically needed measure. New research has developed an efficient way to improve methods for detecting polluting emissions using a sensor at the nanoscale.

A new way to manufacture nanofibers

May 13, 2015 8:51 am | by James Hataway, Univ. of Georgia | Videos | Comments

Researchers at the Univ. of Georgia have developed an inexpensive way to manufacture extraordinarily thin polymer strings commonly known as nanofibers. These polymers can be made from natural materials like proteins or from human-made substances to make plastic, rubber or fiber, including biodegradable materials.

Faster, smaller, more informative

May 12, 2015 7:37 am | by Anne Trafton, MIT News Office | News | Comments

A new technique invented at Massachusetts Institute of Technology can measure the relative positions of tiny particles as they flow through a fluidic channel, potentially offering an easy way to monitor the assembly of nanoparticles, or to study how mass is distributed within a cell. With further advancements, this technology has the potential to resolve the shape of objects in flow as small as viruses, the researchers say.

Measurement of a single nuclear spin in biological samples

May 11, 2015 12:06 pm | by Univ. of Basel | News | Comments

Physicists were able to show, for the first time, that the nuclear spins of single molecules can be detected with the help of magnetic particles at room temperature. The researchers describe a novel experimental setup with which the tiny magnetic fields of the nuclear spins of single biomolecules could be registered for the first time.

Whispering gallery for graphene electrons

May 11, 2015 9:08 am | by NIST | News | Comments

An international research group led by scientists at NIST has developed a technique for creating nanoscale whispering galleries for electrons in graphene. The development opens the way to building devices that focus and amplify electrons just as lenses focus light and resonators (like the body of a guitar) amplify sound.

Scientists control the flow of heat, light in photonic crystals

May 8, 2015 8:44 am | by Univ. of Twente | News | Comments

Scientists from the MESA+ Institute for Nanotechnology at the Univ. of Twente in the Netherlands and Thales Research & Technology, France, have found a way to control heat propagation in photonic nano-sized devices, which will be used for high speed communications and quantum information technologies.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading