Advertisement
Nanotechnology
Subscribe to Nanotechnology

The Lead

Shaping the future of nanocrystals

August 22, 2014 8:55 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | Videos | Comments

The first direct observations of how facets form and develop on platinum nanocubes point the way towards more sophisticated and effective nanocrystal design and reveal that a nearly 150 year-old scientific law describing crystal growth breaks down at the nanoscale.

Researchers map quantum vortices inside superfluid helium nanodroplets

August 22, 2014 7:41 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Scientists have, for the first time, characterized so-called quantum vortices that swirl...

Could elastic bands monitor patients’ breathing?

August 20, 2014 11:39 am | News | Comments

Research published in ACS Nano identifies a new type of sensor that could monitor body...

Engineers take step toward photonic circuits

August 20, 2014 8:35 am | by Richard Cairney, Univ. of Alberta | News | Comments

The invention of fiber optics revolutionized the way we share information, allowing us to...

View Sample

FREE Email Newsletter

Bubbling down: Discovery suggests surprising uses for common bubbles

August 20, 2014 8:29 am | by John Sullivan, Office of Engineering Communications, Princeton Univ. | News | Comments

Anyone who has ever had a glass of fizzy soda knows that bubbles can throw tiny particles into the air. But in a finding with wide industrial applications, Princeton Univ. researchers have demonstrated that the bursting bubbles push some particles down into the liquid as well.

Bacterial nanowires not what scientists thought they were

August 19, 2014 8:28 am | by Robert Perkins, Univ. of Southern California | Videos | Comments

For the past 10 years, scientists have been fascinated by a type of “electric bacteria” that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety of solid surfaces. A team led by scientists has now turned the study of these bacterial nanowires on its head, discovering that the key features in question are not pili as previously believed.

Promising ferroelectric materials suffer from unexpected electric polarizations

August 18, 2014 9:46 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics—remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data.

Advertisement

Molecular shuttle speeds up hydrogen production

August 14, 2014 10:25 am | News | Comments

A research team in Europe has achieved significantly increase in the yield of hydrogen produced by the photocatalytic splitting of water. Their breakthrough in light-driven generation of hydrogen was achieved by using a novel molecular shuttle to enhance charge-carrier transport with semiconductor nanocrystals.

Chip-based platform could simplify measurements of single molecules

August 14, 2014 9:11 am | by Melissae Fellet, Univ. of California, Santa Cruz | News | Comments

Researchers at the Univ. of California, Santa Cruz have developed a new approach for studying single molecules and nanoparticles by combining electrical and optical measurements on an integrated chip-based platform. In a paper published in Nano Letters, the researchers reported using the device to distinguish viruses from similarly-sized nanoparticles with 100% fidelity.

Immune cells get cancer-fighting boost from nanomaterials

August 14, 2014 9:00 am | by Rase McCry, Yale Univ. | News | Comments

Scientists at Yale Univ. have developed a novel cancer immunotherapy that rapidly grows and enhances a patient’s immune cells outside the body using carbon nanotube-polymer composites; the immune cells can then be injected back into a patient’s blood to boost the immune response or fight cancer.

Test reveals purity of graphene

August 14, 2014 8:02 am | by Mike Williams, Rice Univ. | News | Comments

Graphene may be tough, but those who handle it had better be tender. The environment surrounding the atom-thick carbon material can influence its electronic performance, according to researchers at Rice and Osaka universities who have come up with a simple way to spot contaminants.

Nanotech invention improves effectiveness of the “penicillin of cancer”

August 14, 2014 8:01 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

By combining magnetic nanoparticles with one of the most common and effective chemotherapy drugs, Argonne National Laboratory researchers have created a way to deliver anti-cancer drugs directly into the nucleus of cancer cells. They have created nano-sized bubbles, or “micelles,” that contain magnetic nanoparticles of iron oxide and cisplatin, a conventional chemotherapy drug also known as “the penicillin of cancer.”

Advertisement

New material could enhance fast, accurate DNA sequencing

August 14, 2014 7:41 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Gene-based personalized medicine has many possibilities for diagnosis and targeted therapy, but one big bottleneck: the expensive and time-consuming DNA sequencing process. Now, researchers at the Univ. of Illinois at Urbana-Champaign have found that nanopores in the material molybdenum disulfide (MoS2) could sequence DNA more accurately, quickly and inexpensively than anything yet available.

Custom-made nanotubes

August 13, 2014 12:39 pm | News | Comments

Researchers in Europe have succeeded for the first time in growing single-walled carbon nanotubes with only a single, prespecified structure. The nanotubes thereby have identical electronic properties. The decisive trick was producing the carbon nanotube from custom-made organic precursor molecules.

New material could be used for energy storage, conversion

August 13, 2014 11:50 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Lawrence Livermore National Laboratory researchers have made a material that is 10 times stronger and stiffer than traditional aerogels of the same density. This ultra-low-density, ultra-high surface area bulk material with an interconnected nanotubular makeup could be used in catalysis, energy storage and conversion, thermal insulation, shock energy absorption and high energy density physics.

Eco-friendly pre-fab nanoparticles could advance nanomanufacturing

August 13, 2014 11:21 am | by Janet Lathrop, UMass Amherst | News | Comments

A team of materials chemists, polymer scientists, device physicists and others at the Univ. of Massachusetts Amherst report a breakthrough technique for controlling molecular assembly of nanoparticles over multiple length scales that should allow faster, cheaper, more ecologically friendly manufacture of organic photovoltaics and other electronic devices.

New research to develop next-generation “race track memory” technology

August 13, 2014 9:02 am | News | Comments

Inspired by the discovery of “race track memory” by IBM researchers, scientists at the Univ. of California, Davis, with the support of the Semiconductor Research Corp., are investigating complex oxides that could be used to manipulate magnetic domain walls within the wires of semiconductor memory devices at nanoscale dimensions. This research may lead to devices that displace existing magnetic hard disk drive and solid state RAM solutions.

Advertisement

Researchers prove stability of wonder material silicene

August 12, 2014 10:32 am | by Institute of Physics | News | Comments

An international team of researchers has taken a significant step towards understanding the fundamental properties of the 2-D material silicene by showing that it can remain stable in the presence of oxygen. In a study published in 2D Materials, the researchers have shown that thick multi-layers of silicene can be isolated from parent material silicon and remain intact when exposed to air for at least 24 hrs.

New biomaterial coats tricky burn wounds by acting like cling wrap

August 11, 2014 12:33 pm | News | Comments

Wrapping wound dressings around fingers and toes can be tricky, but for burn victims, guarding them against infection is critical. At the National Meeting & Exposition of the American Chemical Society scientists have reported the development of new ultra-thin coatings called nanosheets that can cling to the body's contours and keep bacteria at bay. The super-thin sheets have been tested on mice and could help transform burn treatment.

Competing forces coax nanocubes into helical structures

August 11, 2014 8:45 am | News | Comments

Scientists in Israel have recently used nanocubes to create surprisingly yarn-like strands: They showed that given the right conditions, cube-shaped nanoparticles are able to align into winding helical structures. Their results reveal how nanomaterials can self-assemble into unexpectedly beautiful and complex structures.

Running on waste heat

August 11, 2014 7:36 am | by Rob Matheson, MIT News Office | News | Comments

It’s estimated that more than half of U.S. energy is wasted as heat. Mostly, this waste heat simply escapes into the air. But that’s beginning to change, thanks to thermoelectric innovators such as Massachusetts Institute of Technology’s Gang Chen. Thermoelectric materials convert temperature differences into electric voltage.

Synthesis of structurally pure carbon nanotubes using molecular seeds

August 7, 2014 9:34 am | News | Comments

For the first time, researchers have succeeded in "growing" single-wall carbon nanotubes (CNT) with a single predefined structure, and hence with identical electronic properties. The method involved self-assembly of tailor-made organic precursor molecules on a platinum surface. In the future, carbon nanotubes of this kind may be used in ultra-sensitive light detectors and ultra-small transistors.

Diamond defects engineered for quantum computing and subatomic imaging

August 6, 2014 9:54 am | by Catherine Meyers, Univ. of Chicago | News | Comments

By carefully controlling the position of an atomic-scale diamond defect within a volume smaller than what some viruses would fill, researchers have cleared a path toward better quantum computers and nanoscale sensors. These diamond defects are attractive candidates for qubits, the quantum equivalent of a computing bit, and accurate positioning is key to using them to store and transmit information.

Nano Testing for Future Electronics

August 6, 2014 8:56 am | by Lindsay Hock, Managing Editor | Articles | Comments

The engineering of functional systems at the molecular scale, nanotechnology refers to the applied part of nanoscience which typically includes the engineering to control, manipulate and structure matter at an atomically small scale. Nanotechnology as a field is nothing less than diverse, ranging from extensions of conventional device physics to new approaches based upon molecular self-assembly.

The perfect atom sandwich requires an extra layer

August 5, 2014 11:21 am | by Anne Ju, Cornell Univ. | News | Comments

Like the perfect sandwich, a perfectly engineered thin film for electronics requires not only the right ingredients, but also just the right thickness of each ingredient in the desired order, down to individual layers of atoms. In recent experiments Cornell Univ. researchers found a major difference between assembling atomically precise oxide films and the conventional layer-by-layer “sandwich making” of molecular beam epitaxy.

Advanced thin-film technique could deliver long-lasting medication

August 5, 2014 7:57 am | by Peter Dizikes, MIT News Office | News | Comments

About one in four older adults suffers from chronic pain. Many of those people take medication, usually as pills. But this is not an ideal way of treating pain: Patients must take medicine frequently, and can suffer side effects, since the contents of pills spread through the bloodstream to the whole body. Now researchers have refined a technique that could enable pain medication to be released directly to specific parts of the body.

Bottling up sound waves

August 4, 2014 3:23 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

There’s a new wave of sound on the horizon carrying with it a broad scope of tantalizing potential applications, including advanced ultrasonic imaging and therapy, and acoustic cloaking, levitation and particle manipulation. Researchers with Lawrence Berkeley National Laboratory have developed a technique for generating acoustic bottles in open air that can bend the paths of sound waves along prescribed convex trajectories.

Researchers close in on pure lithium anode

July 31, 2014 4:15 pm | by Andrew Myers, Stanford Univ. | News | Comments

In a recent paper, a team at Stanford Univ. which includes materials science expert Yi Cui and 2011 R&D Magazine Scientist of the Year Steven Chu report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades: design a pure lithium anode.

Nature inspires a greener way to make colorful plastics

July 30, 2014 2:00 pm | News | Comments

Long before humans figured out how to create colors, nature had already perfected the process. Now scientists are tapping into those secrets to develop a more environmentally friendly way to make colored plastics. Their paper on using structure—or the shapes and architectures of materials—rather than dyes, to produce color appears in Nano Letters.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading