Advertisement
Nanotechnology
Subscribe to Nanotechnology

The Lead

Could I squeeze by you?

October 22, 2014 8:15 am | by Breehan Gerleman Lucchesi, Communications Specialist, Ames Laboratory | News | Comments

Scientists at Ames Laboratory have developed deeper understanding of the ideal design for mesoporous nanoparticles used in catalytic reactions, such as hydrocarbon conversion to biofuels. The research will help determine the optimal diameter of channels within the nanoparticles to maximize catalytic output.

Crystallizing the DNA nanotechnology dream

October 20, 2014 9:46 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

DNA has garnered attention for its potential as a programmable material platform that could...

Scientist invent new method for fabricating graphene nanoribbons

October 17, 2014 9:23 am | by Shaun Mason, UCLA | News | Comments

Graphene’...

View Sample

FREE Email Newsletter

A simple and versatile way to build three-dimensional materials of the future

October 16, 2014 10:14 am | News | Comments

Researchers in Japan have developed a new yet simple technique called "diffusion driven layer-by-layer assembly" to construct graphene into porous 3-D structures for applications in devices such as batteries and supercapacitors. The new method borrowed a principle from polymer chemistry, known as interfacial complexation, to allow graphene oxide to form a stable composite layer with an oppositely charged polymer.

Scientists synthesize a two-element atomic chain inside a carbon nanotube

October 16, 2014 10:05 am | News | Comments

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology have synthesized an atomic chain in which two elements, cesium and iodine, are aligned alternately inside a carbon nanotube. Analyzed using electron microscopy and spectroscopy, the invention could shed light on the adsorption mechanisms of radioactive elements.

Researchers develop world’s thinnest electric generator

October 15, 2014 2:47 pm | News | Comments

Scientists report that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide. This finding has resulted in a unique electric generator and could point the way to mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

Advertisement

Slippery when dry: Graphene proves a long-lasting lubricant

October 14, 2014 9:08 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

When trying to design a mechanical system to last as long as possible, scientists and engineers have to find ways of overcoming friction. While researchers have found many materials that help to reduce friction, conventional lubricants often have chemical limitations. A recent analysis at Argonne National Laboratory has identified the properties of a newer, wear-resistant substance that works in a broader range of environments.

Force-sensing microrobots to probe cells

October 14, 2014 7:56 am | by Emil Venere, Purdue Univ. | News | Comments

Inexpensive microrobots capable of probing and manipulating individual cells and tissue for biological research and medical applications are closer to reality with the design of a system that senses the minute forces exerted by a robot's tiny probe. Microrobots small enough to interact with cells already exist. However, there is no easy, inexpensive way to measure the small forces applied to cells by the robots, until now.

Tailored flexible illusion coatings hide objects from detection

October 13, 2014 10:53 am | News | Comments

Developing the cloak of invisibility would be wonderful, but sometimes simply making an object appear to be something else will do the trick, according to Penn State Univ. engineers. To do this, they employ what they call "illusion coatings," which are made of a thin flexible substrate with copper patterns designed to create the desired result. The metamaterial coatings can function normally while appearing as something else.

Solid nanoparticles can deform like a liquid

October 13, 2014 8:24 am | by David L. Chandler, MIT News Office | News | Comments

A surprising phenomenon has been found in metal nanoparticles: They appear, from the outside, to be liquid droplets, wobbling and readily changing shape, while their interiors retain a perfectly stable crystal configuration. The research team behind the finding says the work could have important implications for the design of components in nanotechnology, such as metal contacts for molecular electronic circuits.

Plasmonic paper detects trace amounts of chemicals and molecules

October 10, 2014 12:25 pm | News | Comments

Using a common laboratory filter paper decorated with gold nanoparticles, researchers at Washington Univ. in St. Louis have created a unique platform, known as “plasmonic paper,” for detecting and characterizing even trace amounts of chemicals and biologically important molecules, including explosives, chemical warfare agents, environmental pollutants and disease markers.

Advertisement

DNA nanofoundries cast custom-shaped metal nanoparticles

October 10, 2014 7:50 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. have unveiled a new method to form tiny 3-D metal nanoparticles in prescribed shapes and dimensions using DNA, nature's building block, as a construction mold. The ability to mold inorganic nanoparticles out of materials such as gold and silver in precisely designed 3-D shapes is a significant breakthrough.

Nanoparticles get a magnetic handle

October 9, 2014 10:50 am | by David L. Chandler, MIT News Office | Videos | Comments

A long-sought goal of creating particles that can emit a colorful fluorescent glow in a biological environment, and that could be precisely manipulated into position within living cells, has been achieved by a team of researchers at Massachusetts Institute of Technology and several other institutions. The new technology could make it possible to track the position of the nanoparticles as they move within the body or inside a cell.

Hybrid materials could smash the solar efficiency ceiling

October 9, 2014 8:57 am | News | Comments

Researchers have developed a new method for harvesting the energy carried by particles known as “dark” spin-triplet excitons with close to 100% efficiency, clearing the way for hybrid solar cells which could far surpass current efficiency limits. To date, this type of energy transfer had only been shown for “bright” spin-singlet excitons.

Unconventional photoconduction in an atomically thin semiconductor

October 7, 2014 3:36 pm | by David L. Chandler, MIT | News | Comments

It’s a well-known phenomenon in electronics: Shining light on a semiconductor, such as the silicon used in computer chips and solar cells, will make it more conductive. But now researchers have discovered that in a special semiconductor, light can have the opposite effect, making the material less conductive instead. This new mechanism of photoconduction could lead to next-generation excitonic devices.

New method creates scrolling nanosheets on demand

October 6, 2014 2:37 pm | by Poncie Rutsch, Okinawa Institute of Science and Technology | News | Comments

Nanoparticles could revolutionize the medical industry, but they must first target a specific region in the body, be trackable, and perform their function at the right moment. Researchers in Japan have made progress in this direction with a new type of nanomaterial: the nanosheet. Specifically, they have designed a strong, stable and optically traceable smart 2-D material that responds to pH, or the acidity or basicity of its environment.

Advertisement

Fast, cheap nanomanufacturing

October 6, 2014 9:19 am | by Larry Hardesty, MIT | News | Comments

Arrays of tiny conical tips that eject ionized materials are being made at the Massachusetts Institute of Technology. The technology, which harnesses electrostatic forces, has a range of promising applications, such as spinning out nanofibers for use in “smart” textiles or propulsion systems for fist-sized “nanosatellites.” The latest prototype array that generates 10 times the ion current per emitter that previous arrays did.

Creating nanostructures using simple stamps

October 2, 2014 1:31 pm | News | Comments

Nanostructures of virtually any possible shape can now be made using a combination of techniques developed to exploit the unique properties of so-called perovskites. The group based in the Netherlands, developed a pulsed laser deposition technique to create patterns in ultra thin layers, one atomic layer at a time. The perovskites’ crystal structure is undamaged by this soft lithography technique, maintaining electrical conductivity.

Study: Nanoparticles accumulate quickly in wetland sediment

October 2, 2014 8:14 am | by Ken Kingery, Duke Univ. | News | Comments

A Duke Univ. team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could indirectly damage the aquatic food chain. According to the research, the risk to humans ingesting the particles through drinking water is slight, but aquatic food chains might be harmed by molecules "piggybacking" on the carbon nanoparticles.

Platinum meets its match in quantum dots from coal

October 1, 2014 8:31 am | by Mike Williams, Rice Univ. | News | Comments

Graphene quantum dots created at Rice Univ. grab onto graphene platelets like barnacles attach themselves to the hull of a boat. But these dots enhance the properties of the mothership, making them better than platinum catalysts for certain reactions within fuel cells.

Researchers develop transparent nanoscintillators for radiation detection

September 30, 2014 7:56 am | by Traci Peterson, Univ. of Texas at Arlington | News | Comments

A Univ. of Texas at Arlington research team says recently identified radiation detection properties of a light-emitting nanostructure built in their lab could open doors for homeland security and medical advances. In a paper to be published in Optics Letters, the team describes a new method to fabricate transparent nanoscintillators by heating nanoparticles composed of lanthanum, yttrium and oxygen until a transparent ceramic is formed.

Scientists improve microscopic batteries with homebuilt imaging analysis

September 29, 2014 12:26 pm | News | Comments

In a rare case of having their cake and eating it too, scientists from NIST and other institutions have developed a toolset that allows them to explore the complex interior of tiny, multi-layered batteries they devised. It provides insight into the batteries’ performance without destroying them, which results in both a useful probe for scientists and a potential power source for micromachines.

A prison for photons in a diamond-like photonic crystal

September 26, 2014 9:08 am | News | Comments

Confined photons have many potential applications, such as efficient miniature lasers, on-chip information storage, or tiny sensors on pharmaceuticals. Making a structure that can capture photons is difficult, but scientists in the Netherlands have recently devised a new type of resonant cavity inside a photonic crystal that imprisons light in all three dimensions.

On the road to artificial photosynthesis

September 26, 2014 8:04 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The excessive atmospheric carbon dioxide that is driving global climate change could be harnessed into a renewable energy technology that would be a win for both the environment and the economy. That is the lure of artificial photosynthesis in which the electrochemical reduction of carbon dioxide is used to produce clean, green and sustainable fuels. 

World’s smallest reference material is a big plus for nanotechnology

September 25, 2014 9:44 am | News | Comments

If it's true that good things come in small packages, then NIST can now make anyone working with nanoparticles very happy. The institute recently issued Reference Material (RM) 8027, the smallest known reference material ever created for validating measurements of man-made, ultrafine particles between 1 and 100 nm in size.

Researchers develop simple, one-step method to synthesize nanoparticles

September 24, 2014 12:01 pm | News | Comments

Scientists at the U.S. Naval Research Laboratory have introduced a new one-step process using, for the first time in these types of syntheses, potassium superoxide to rapidly form oxide nanoparticles from simple salt solutions in water. An important advantage of this method is the capability of creating bulk quantities of these materials, more than 10 g in a single step.

2-D materials’ crystalline defects key to new properties

September 24, 2014 11:13 am | News | Comments

using an aberration-corrected scanning transmission electron microscope, researchers have recently understood how defects in 2-D crystals such as tungsten disulphide can move, or dislocate, to other locations in the material. Understanding how atoms "glide" and "climb" on the surface of 2-D crystals may pave the way for researchers to develop materials with unusual or unique characteristics.

Nanotechnology leads to better, cheaper LEDs for phones and lighting

September 24, 2014 10:57 am | by John Sullivan, Princeton Univ. | News | Comments

Princeton Univ. researchers have developed a new method to increase the power and clarity of light-emitting diodes (LEDs). Using a new nanoscale structure made from flexible carbon-based sheet, the researchers increased the brightness and efficiency of LEDs made of organic materials by 57%.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading