Advertisement
Nanotechnology
Subscribe to Nanotechnology

The Lead

High-performance, low-cost ultracapacitors built with graphene and carbon nanotubes

April 23, 2014 9:25 am | News | Comments

By combining the powers of two single-atom-thick carbon structures, researchers at the George Washington Univ.'s Micro-propulsion and Nanotechnology Laboratory have created a new ultracapacitor that is both high performance and low cost. The device capitalizes on the synergy brought by mixing graphene flakes with single-walled carbon nanotubes, two carbon nanostructures with complementary properties.

Like a hall of mirrors, nanostructures trap photons inside ultra-thin solar cells

April 23, 2014 8:13 am | by Tom Abate, Stanford Engineering | News | Comments

In the quest to make sun power more competitive, researchers are designing ultra-thin solar...

Cloaked DNA nanodevices survive pilot mission

April 22, 2014 9:13 am | by Dan Ferber, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And...

New material coating technology mimics nature’s Lotus effect

April 22, 2014 8:34 am | News | Comments

Of late, engineers have been paying more and more...

View Sample

FREE Email Newsletter

Gecko-like adhesives now useful for real world surfaces

April 21, 2014 3:12 pm | News | Comments

The ability to stick objects to a wide range of surfaces such as drywall, wood, metal and glass with a single adhesive has been the elusive goal of many research teams across the world, but now a team of Univ. of Massachusetts Amherst inventors describe a new, more versatile version of their invention, Geckskin, that can adhere strongly to a wider range of surfaces, yet releases easily, like a gecko's feet.

Nanoreporters tell ‘sour’ oil from ‘sweet’

April 21, 2014 8:38 am | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have created a nanoscale detector that checks for and reports on the presence of hydrogen sulfide in crude oil and natural gas while they’re still in the ground. The nanoreporter is based on nanometer-sized carbon material developed by a consortium of Rice labs led by chemist James Tour, R&D’s 2013 Scientist of the Year.  

Scientists produce thinnest feasible membrane

April 18, 2014 3:10 pm | by Fabio Bergamin, ETH Zurich | News | Comments

Researchers have produced a stable porous membrane that is thinner than a single nanometer. The membrane consists of two layers of graphene on which have been etched tiny pores of a precisely defined size. Extremely light and breathable, the new material could help enable a new generation of ultra-rapid filters or functional waterproof clothing.

Advertisement

“Exotic” material is like a switch when super thin

April 18, 2014 3:05 pm | by Anne Ju, Cornell Univ. | News | Comments

Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides. Researchers from Cornell Univ. and Brookhaven National Laboratory have shown how to switch a particular transition metal oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick.

Breakthrough atomic-level observation uses super-resolution microscope

April 17, 2014 9:46 am | News | Comments

A research group in Japan has developed a new advanced system that combines a super-resolution microscope and a deposition chamber for growing oxide thin films. With this system, they successfully observed for the first time the growing of metal-oxide thin films at an atomic level on the surface of single-crystal strontium titanate.

Making new materials an atomic layer at a time

April 17, 2014 9:36 am | News | Comments

Researchers in Pennsylvania and Texas have shown the ability to grow high quality, single-layer materials one on top of the other using chemical vapor deposition. This highly scalable technique, often used in the semiconductor industry, can produce materials with unique properties that could be applied to solar cells, ultracapacitors for energy storage, or advanced transistors for energy efficient electronics, among many other applications.

Progress in the fight against quantum dissipation

April 17, 2014 7:50 am | by Eric Gershon, Yale Univ. | News | Comments

Scientists at Yale Univ. have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. High-quality quantum switches are essential for the development of quantum computers and the quantum Internet.

Relieving electric vehicle range anxiety with improved batteries

April 16, 2014 8:15 am | by Frances White, PNNL | News | Comments

Electric vehicles could travel farther and more renewable energy could be stored with lithium-sulfur batteries that use a unique powdery nanomaterial. Researchers added the powder, a kind of nanomaterial called a metal organic framework, to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.

Advertisement

Nanocrystalline cellulose modified into an efficient viral inhibitor

April 15, 2014 11:38 am | News | Comments

Researchers in Finland have succeeded in creating a surface on nano-sized cellulose crystals that imitates a biological structure. The surface adsorbs viruses and disables them, preventing their spread into cells. The results could prove useful in the development of antiviral ointments and surfaces.

The Benefits of Single-particle ICP MS for the Characterization of Engineered Nanomaterials

April 15, 2014 8:41 am | by Rob Thomas and Chady Stephan | Articles | Comments

The unique properties of engineered nanoparticles have created intense interest in their environmental behavior. Due to the increased use of nanotechnology in consumer products, industrial applications and health care technology, nanoparticles are more likely to enter the environment. For this reason, it’s not only important to know the type, size and distribution of nanoparticles, but it’s also crucial to understand their impact.

Shiny quantum dots brighten future of solar cells

April 14, 2014 10:42 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum dot work by Los Alamos National Laboratory researchers in collaboration with scientists from Univ. of Milano-Bicocca, Italy. Their project demonstrates that superior light-emitting properties of quantum dots can be applied in solar energy by helping more efficiently harvest sunlight.

A molecular approach to solar power

April 14, 2014 7:38 am | by David L. Chandler, MIT News Office | News | Comments

It’s an obvious truism, but one that may soon be outdated: The problem with solar power is that sometimes the sun doesn’t shine. Now a team at Massachusetts Institute of Technology and Harvard Univ. has come up with an ingenious workaround: a material that can absorb the sun’s heat and store that energy in chemical form, ready to be released again on demand.

New physical phenomenon on nanowires seen for the first time

April 11, 2014 1:06 pm | News | Comments

For optical communication to happen, it is essential to convert electrical information into light, using emitters. On the other end of the optical link, one needs to translate the light stream into electrical signals using detectors. Current technologies use different materials to realize these two distinct functions, but this might soon change thanks to a new discovery by researchers at IBM.

Advertisement

Tiny particles may pose big risk

April 10, 2014 11:05 am | by Anne Trafton, MIT News Office | News | Comments

Thousands of consumer products contain nanoparticles added by manufacturers to improve texture, kill microbes or enhance shelf life, among other purposes. However, several studies have shown that some of these engineered nanoparticles can be toxic to cells. A new study from Massachusetts Institute of Technology and the Harvard School of Public Health suggests that certain nanoparticles can also harm DNA.

Electromagnetically induced transparency in a silicon nitride optomechanical crystal

April 10, 2014 8:45 am | News | Comments

Researchers from the NIST Center for Nanoscale Science and Technology have observed electromagnetically induced transparency at room temperature and atmospheric pressure in a silicon nitride optomechanical system. This work highlights the potential of silicon nitride as a material for producing integrated devices in which mechanical vibrations can be used to manipulate and modify optical signals.

The motion of the medium matters for self-assembling particles

April 10, 2014 8:16 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

By attaching short sequences of single-stranded DNA to nanoscale building blocks, researchers can design structures that can effectively build themselves. The building blocks that are meant to connect have complementary DNA sequences on their surfaces, ensuring only the correct pieces bind together as they jostle into one another while suspended in a test tube.

A first principles approach to creating new materials

April 9, 2014 3:02 pm | by Marlene Cimons, National Science Foundation | News | Comments

Traditionally, scientists discover new materials, and then probe them to understand their properties. Theoretical materials physicist Craig Fennie does it in reverse. He creates new materials by employing a "first principles" approach based on quantum mechanics, in which he builds materials atom by atom, starting with mathematical models, in order to gain the needed physical properties.

Tiny “step edges” are a big step for surface science

April 9, 2014 2:59 pm | News | Comments

Recent experiments in Austria have explained the behavior of electrons at tiny step edges on titanium oxide surfaces. The finding, which shows why oxygen atoms attach so well to these edges, is important for solar cell technology and novel, more effective catalysts.

No compromises: JILA’s short, flexible, reusable AFM probe

April 9, 2014 10:00 am | News | Comments

Researchers at JILA in Colorado have engineered a short, flexible, reusable probe for the atomic force microscope (AFM) that enables state-of-the-art precision and stability in picoscale force measurements. Shorter, softer and more agile than standard and recently enhanced AFM probes, the JILA tips will benefit nanotechnology and studies of folding and stretching in biomolecules such as proteins and DNA.

Domain walls in nanowires cleverly set in motion

April 8, 2014 12:02 pm | News | Comments

Using a new trick, researchers in Germany have been able to induce synchronous motion of the domain walls in a ferromagnetic nanowire. This is an important breakthrough for controlled movement of domain walls that allows permanent data to be stored using nanomagnets.  The advance involved applying a pulsed magnetic field that was perpendicular to the plane of the domain walls.

Even thinner solar cells through use of nanoparticles

April 8, 2014 11:16 am | News | Comments

New research shows that nanostructures could enable more light to be directed into the active layer of solar cells, increasing their efficiency. Prof. Martina Schmid of Freie Univ. in Berlin has measured how irregularly distributed silver particles influence the absorption of light. Nanoparticles interact with one another via their electromagnetic near-fields, so that local “hot spots” arise where light is concentrated especially strongly.

Scalable CVD process for making 2-D molybdenum diselenide

April 8, 2014 11:04 am | News | Comments

Nanoengineering researchers at Rice Univ. and Nanyang Technological Univ. in Singapore have unveiled a potentially scalable method for making one-atom-thick layers of molybdenum diselenide—a highly sought semiconductor that is similar to graphene but has better properties for making certain electronic devices like switchable transistors and light-emitting diodes.

Graphene nanoribbons as electronic switches

April 8, 2014 9:29 am | News | Comments

A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices. The results, obtained by researchers in Argentina and Brazil, yield a clearer theoretical understanding of conductivity in graphene samples of finite size, which have applications in externally controlled electronic devices.

Trees go high-tech: Process turns cellulose into energy storage devices

April 7, 2014 1:19 pm | News | Comments

Chemists have found that cellulose, the most abundant organic polymer on Earth, can be heated in a furnace in the presence of ammonia and turned into the building blocks for supercapacitors. The new process produces nitrogen-doped, nanoporous carbon membranes, which act as the electrodes of a supercapacitor. The only byproduct is methane, which could be used immediately as a fuel or for other purposes.

Rebar technique strengthens case for graphene

April 7, 2014 7:57 am | News | Comments

Carbon nanotubes are reinforcing bars that make 2-D graphene much easier to handle in a new hybrid material grown by researchers at Rice Univ. The Rice laboratory of chemist James Tour set nanotubes into graphene in a way that not only mimics how steel rebar is used in concrete but also preserves and even improves the electrical and mechanical qualities of both.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading